Radioactive Ion Beams at the HRIBF
Present Status and Future Development Plans

HRIBF Workshop - Near and Sub-barrier Fusion of Radioactive Ions with Medium and Heavy Targets
December 2-3, 2005
Oak Ridge, TN

Dan Stracener
Physics Division, ORNL
Welcome to the new HRIBF website.

Please let us know if you find any broken links (page and link).

You can use the menu to the left or choose a country or city to navigate.

For questions about this page please contact the HRIBF User Liaison.

This file last modified Wednesday, July 13, 2005
Proton-rich Radioactive Ion Beams

- Seven different targets used
- Three different ion sources
- 14 radioactive beams
Accelerated Proton-rich Radioactive Ion Beams

<table>
<thead>
<tr>
<th>RIB</th>
<th>Energy Range (MeV)</th>
<th>Highest Intensity (pps on target)</th>
<th>ORIC Current (µA on target)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁷Be</td>
<td>4 - 100</td>
<td>2.0 x 10⁷</td>
<td>n/a</td>
<td>100</td>
</tr>
<tr>
<td>¹⁷F</td>
<td>10-170</td>
<td>1.0 x 10⁷</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>¹⁸F</td>
<td>10-108</td>
<td>6.0 x 10⁵</td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>⁶⁷Ga</td>
<td>160</td>
<td>2.5 x 10⁵</td>
<td>5</td>
<td>> 90</td>
</tr>
<tr>
<td>⁶⁹As</td>
<td>160</td>
<td>2.0 x 10⁶</td>
<td>5</td>
<td>~ 10</td>
</tr>
<tr>
<td>⁷⁰As*</td>
<td>140</td>
<td>2.0 x 10³</td>
<td>0.01</td>
<td>< 10⁻⁶</td>
</tr>
</tbody>
</table>

* This beam was used for commissioning of the RIB Injector

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Available Neutron-rich Radioactive Ion Beams
(over 110 beams with intensities $\geq 10^3$ ions/sec)

E/A = 3 MeV/amu
Accelerated n-rich RIBs (A<100 amu)

<table>
<thead>
<tr>
<th>RIB</th>
<th>Energy Range (MeV)</th>
<th>Highest Intensity (pps)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{76}Cu</td>
<td>220</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>^{77}Cu</td>
<td>220</td>
<td>1.6</td>
<td>0.03</td>
</tr>
<tr>
<td>^{78}Cu</td>
<td>220</td>
<td>0.15</td>
<td>0.003</td>
</tr>
<tr>
<td>^{79}Cu</td>
<td>220</td>
<td>0.006</td>
<td>0.00012</td>
</tr>
<tr>
<td>^{78}Ge</td>
<td>175</td>
<td>1.5×10^6</td>
<td>67</td>
</tr>
<tr>
<td>^{80}Ge</td>
<td>179</td>
<td>1.8×10^6</td>
<td>95</td>
</tr>
<tr>
<td>^{82}Ge</td>
<td>183 - 327</td>
<td>1.8×10^4</td>
<td>22</td>
</tr>
<tr>
<td>^{83}Ge</td>
<td>220 - 327</td>
<td>1500</td>
<td>43</td>
</tr>
<tr>
<td>^{84}Ge</td>
<td>220 - 327</td>
<td>95</td>
<td>12</td>
</tr>
<tr>
<td>^{85}Ge</td>
<td>220</td>
<td>1.3</td>
<td>18</td>
</tr>
<tr>
<td>^{86}Ge</td>
<td>220</td>
<td>0.006</td>
<td>0.8</td>
</tr>
<tr>
<td>^{82}Se</td>
<td>380</td>
<td>4.7×10^5</td>
<td>78</td>
</tr>
<tr>
<td>^{83}Se</td>
<td>327</td>
<td>1.7×10^5</td>
<td>95</td>
</tr>
<tr>
<td>^{84}Se</td>
<td>327 - 380</td>
<td>1.1×10^4</td>
<td>10</td>
</tr>
<tr>
<td>^{92}Sr</td>
<td>450</td>
<td>500</td>
<td>72</td>
</tr>
</tbody>
</table>
Accelerated n-rich RIBs (A>100 amu)

<table>
<thead>
<tr>
<th>RIB</th>
<th>Energy Range (MeV)</th>
<th>Highest Intensity (pps)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>117Ag</td>
<td>460</td>
<td>1.2×10^6</td>
<td>95</td>
</tr>
<tr>
<td>118Ag</td>
<td>236 – 455</td>
<td>1.7×10^6</td>
<td>90</td>
</tr>
<tr>
<td>126Sn</td>
<td>378</td>
<td>1.0×10^7</td>
<td>50</td>
</tr>
<tr>
<td>128Sn</td>
<td>384</td>
<td>3.0×10^6</td>
<td>> 99</td>
</tr>
<tr>
<td>130Sn</td>
<td>391 – 550</td>
<td>5.0×10^5</td>
<td>> 99</td>
</tr>
<tr>
<td>131Sn</td>
<td>550</td>
<td>2.5×10^5</td>
<td>> 99</td>
</tr>
<tr>
<td>132Sn</td>
<td>316</td>
<td>8.6×10^5</td>
<td>96</td>
</tr>
<tr>
<td>132Sn</td>
<td>453 – 620</td>
<td>1.5×10^5</td>
<td>96</td>
</tr>
<tr>
<td>133Sn</td>
<td>316</td>
<td>1.7×10^4</td>
<td>33</td>
</tr>
<tr>
<td>134Sn</td>
<td>316 – 560</td>
<td>2.8×10^3</td>
<td>38</td>
</tr>
<tr>
<td>136Sn</td>
<td>400</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>129Sb</td>
<td>400</td>
<td>2.9×10^7</td>
<td>49</td>
</tr>
<tr>
<td>132Te</td>
<td>350 – 396</td>
<td>3.0×10^7</td>
<td>87</td>
</tr>
<tr>
<td>134Te</td>
<td>396 – 565</td>
<td>2.4×10^6</td>
<td>95</td>
</tr>
<tr>
<td>136Te</td>
<td>396 – 470</td>
<td>5.0×10^5</td>
<td>80</td>
</tr>
</tbody>
</table>
RIB Production Targets

- **HfO₂ fibers** (¹⁷F and ¹⁸F)
- **Uranium carbide** (n-rich beams via proton-induced fission)
- **Molten metals**
 - Germanium (Ga, As, and Se beams)
 - Nickel (Cu beams)
- **Ni pellets** (⁵⁶Ni via (p,p2n) reaction – ⁵⁶Co contamination)
- **Cerium sulfide** (³³Cl and ³⁴Cl)
 - Thin layers deposited on W-coated carbon matrix
- **Silicon carbide** (²⁵Al, and ²⁶Al)
 - Fibers (15 μm), powder (1 μm), thin layers on carbon matrix
- **Aluminum oxide** (²⁶Si and ²⁷Si)
 - Thin fibers (6μm) with sulfur added for transport
- **⁷Be** sputter targets (mixed with copper or niobium powder)
Radioactive Ion Beam Injector System

- 300 kV (design) platform
- 2-stage mass separation
 - $M/\Delta M \sim 1000$
 - $M/\Delta M \sim 20000$
- Robotic handling of activated targets and ion sources
RIB Development and Testing Facilities

- **Ion Source Test Facility I (ISTF-1)**
 - characterize ion sources (efficiency, longevity, emittance, energy spread, effusion)
 - some target tests (e.g. effusion through matrix)
 - ion cooler for negative ions (gas-filled RFQ)

- **Ion Source Test Facility II (ISTF-2)**
 - laser ion source
 - ECR ion source

- **On-Line Test Facility (OLTF)**
 - low intensity tests of target and ion source performance
 - compatible with the RIB Injector and results are scaleable

- **High Power Target Laboratory (HPTL)**
 - **NOW** available for target tests using high power beams from ORIC
Ion Source Test Facility I (ISTF-1)
Laser-induced Photodetachment of Ni− and Co− in a He-filled RFQ Ion Cooler

![Graph showing ion current as a function of time with laser on and off]

Neutralization:
- Co−: ~95%
- Ni−: ~10%

- Laser: Nd:YAG, 5 W, CW, 1064 nm
- About 50% of laser beam passed through the RFQ (40 cm long)
- The energy of the negative ions was reduced from 5 keV to <50 eV in the cooler
- Laser interaction time in the RFQ cooler is on the order of 1 ms
Ion Source Test Facility II (ISTF-2)

Mass Analyzing Magnet
Faraday Cup
Emittance Measurement Device
Faraday Cup
Einzel Lens
Ion Source
High Voltage Insulator
High Voltage Platform
Fence
High-Voltage Interlocked Sliding Door
Motor Generator

Oak Ridge National Laboratory
U.S. Department of Energy
Laser Ion Source Experiments (8/31/04 – 9/23/04)

• Laser ion source set up and operated at HRIBF in collaboration with a group from Mainz (Klaus Wendt and students)
• Three-step ionization of Sn, Ge, and Ni obtained
• Last ionization step:
 – autoionization state for Sn and Ge
• No surface ionized Sn, Ge, and Ni ions observed
 – hot-cavity temperatures ~ 1700-2000 C
• Overall LIS efficiencies:
 – 22% for Sn (compared to 10% achieved at ISOLDE)
 – 3.3% for Ge
 – 2.7% for Ni
Laser setup for the initial test at the HRIBF

Laser beam into the hot cavity through the mass-analysis magnet

Ti:sapphire lasers (supplied by the Mainz group)

Nd:YAG Pump laser (60 W, 10 kHz, 532 nm)
Sn Ionization Scheme

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Ni Ionization Scheme

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Ge Ionization Scheme

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
On-Line Target and Ion Source Testing Facility

Beam from Tandem Accelerator

Target / Ion Source

Beam Diagnostics

Dipole Magnet
$M/\Delta M = 2000$

Mass Measurements

Charge Exchange Measurement System

Moving Tape System and γ-ray Detector

TIS Fabrication Area
HfO$_2$ Fiber Target for Production of 17,18F Beams

- Thin Fibers (5 µm) - fast diffusion
- High porosity (density is 1.15 g/cm3)
- Refractory (m.p. is 2770 C)
- Free of volatile impurities
- 4 rolls of HfO$_2$ cloth used for target
 - 1.5 cm diameter x 1 cm thick each
- Al$_2$O$_3$ felt sheath
 - Provides aluminum vapor
 - Fluorine is transported as AlF molecule
- HfO$_2$ cloth sheath
 - Keeps alumina away from the Ta wall
UC Targets for Production of Neutron-rich Beams

- RVC fiber diameter: 60 µm
- Matrix density: 0.06 g/cm³
- UC coating thickness: 8 - 10 µm
- Target density: 1.2 g/cm³
- Long useful lifetimes
 - (>50 days with 10 µA on target)
SiC targets (for the production of ^{25}Al and ^{26}Al beams)

- 15 \(\mu \text{m} \) diameter SiC fibers
- 1 \(\mu \text{m} \) diameter SiC powder
- SiC does not sinter
- Maximum operating temperature is 1650 \(\text{C} \)
- ^{25}Al yields were about the same – \(10^4 \) ions/sec/\(\mu \text{A} \)
- Can increase yield significantly (x10) by adding fluorine to system and extract as AlF
- Next target is a thin layer of SiC on a graphite matrix

\[
\begin{align*}
28\text{Si}(p,\alpha)^{25}\text{Al} \\
28\text{Si}(d,\alpha n)^{25}\text{Al} \\
28\text{Si}(p,2\text{pn})^{26}\text{Al} \\
28\text{Si}(d,\alpha)^{26}\text{Al}
\end{align*}
\]
Production Rates for Sn, Sb, Te, and I isotopes in a UC target

Production Rate from proton-induced fission in uranium
(using 40 MeV protons)

Mass Number (amu)

Cumulative Production Rate (nuclei/second/microAmp)

I
Te
Sb
Sn

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Purity of radioactive Sn Beams

Sn Purity as a percentage of total (%)

Mass of Sn Isotope (amu)

extracted as Sn⁺
extracted as SnS⁺
Intensities for Sn, Sb, and Te Isotopes

- Measured with Bragg detector (gas chamber)
- Beam energy is 316 MeV
- 132Sn beam intensity is 8.6×10^5 pps (96% of total)
- 133Sn beam intensity is 1.5×10^4 pps (33% of total)
- 134Sn beam intensity is 2.8×10^3 pps (38% of total)
- These beams were extracted as sulfide molecules from the ion source
- The percentages of Sn in the atomic ion beams are <1%
- The 134Sb/133Sb ratio is small due to a much shorter half-life
Production Rates for Ge, As, and Se isotopes in a UC target

Production Rates from proton-induced fission of uranium (using 40 MeV protons)

Cumulative Production Rate (nuclei/second/microAmp)

Mass Number (amu)

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Purification of ^{80}Ge beam

Cocktail beam

Beam purified with sulfur (^{80}Ge is 95%)
Elevation View of HPTL
RIB Analysis Beam Line

- Target/Ion Source
- Quad 1
- Object Slits & Diagnostics
- Quad 2
- Image Slits & Diagnostics
- 90° Magnet
- Beam Diagnostics
- Diagnostic End Station

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY
Ion Sources at the HPTL

- The target station and the RIB analysis beam line are designed to be flexible enough to accommodate a variety of ion sources
 - Electron-Beam Plasma ion source (EBPIS)
 - Kinetic Ejection Negative ion source (KENIS)
 - Laser ion source (LIS)
 - Positive surface ionization sources (hot Ta or W tubular ionizer)
 - Negative surface ionization sources (e.g. LaB$_{6}$ ionizer)
 - Cs-sputter type ion sources (multi-sample, batch-mode)
 - Close-coupled designs (e.g. FEBIAD ion source – GSI design)
 - Electron Cyclotron Resonance (ECR) ion sources
 - Ion guide (cooler) techniques
Plans for Target Development at the HPTL

- Materials tests with high power (54 MeV protons, up to 20 µA)
 - SiC, M₅Si₃ (M = Zr, Ta, W, Nb, ...) for ⁵²⁵Al and ²⁶ᵐAl beams
 - CeS for ³³Cl and ³⁴Cl beams
- UC target tests
 - Proton-induced fission vs. deuteron-induced fission (direct)
 - Investigate 2-step targets (larger volumes)
 - Higher density UC targets
 - Measure release efficiency for short-lived isotopes
 - Lifetime of target with high power density
- Thin target geometries
 - Liquid targets
 - As and Se from liquid germanium
 - Cu from liquid nickel
 - Irradiation with ³He and ⁴He beams (Al₂O₃ → P, SiC → S, C → ¹⁵O)
- Production beam manipulation (rastering)
 - HfO₂ target for increased ¹⁷F beam intensity
- Ion sources
 - LaB₆ ion source to make pure Br and I beams (investigate long-term poisoning with high intensity production beams)
 - Close-coupled target to reduce effusion times