Decay spectroscopy with RILIS
Resonance lonization Laser lon Source

W. B. Walters, Chemistry, University of
Maryland

Encompass work performed at

ISOLDE (Ravn, Mishin, Fedeyosev,Koster) in
collaboration with the Institute for
Kernchemie in Mainz Kratz, Pfeiffer, Wohr,
Wendt) & the IKS, Leuven, (Huyse and Van
Duppen)

Motivation in Mainz was clearly to investigate
the decay properties of neutron-rich nuclides
involved in r-process nucleosynthesis.



Let me start by thanking DOE for many years of support, and also
the Alexander von Humboldt Foundation for funding last year
that permitted a 6-month stay in Mainz.

The start of RILIS work at ISOLDE was the recognition by Karl-Ludwig Kratz that the
CHEMICAL SELECTIVITY needed to isolate r-process nuclides could be achieved via
resonance-laser ionization. The first experiments with resonance laser ionization were conducted
at GSI to separate 1°1Sn where the advantage over other methods was not encouraging. But, a
fortuitous combination of people in Mainz, Troitsk and CERN made much more successful
implementation at ISOLDE possible. Those involved included Viatcheslav Mishin and Valentin
Fedoseyev from the Russian Institute for Spectroscopy, Troitsk , along with Helge Ravn and Ulli
Koster at CERN/ISOLDE, Jurgen Kluge, Klaus Wendt, Andreas Wohr, and other laser physicists
in Mainz. [NIM B73, 550 (1993);ZP A 353, 9 (1995); Phys. Scr. TS6, 262(1995)]

There were also parallel developments of laser ion sources led by Mark Huyse and Piet Van
Duppen from the University of Leuven for Co and Ni. [NIM B 114,350(1996)] Note that the
work in Leuven was performed with an Ion Guide, not a chemical ion source. In that regard, it
was possible to study the decay of heavy short-lived Ni isotopes whose release in a chemical ion
source is quite slow.



Two key advantages are associated with
ionization enhanced by the use of a RILIS,
....It can be turned off, and it can be tuned.

The first slide shows the gamma spectrum for
Ag-126 taken last August, with the laser-on
spectrum and laser-off spectrum shown
together

Tuning means that it is possible to separate
Isomers.

| will show the old Ag-122 spectrum from
1997 along with the neutron counting-rate as
a function of laser frequency. Later on, | will
present some data showing the presence of
simil ar isomers in Ag-124 and Ag-126.

Perhaps the most impressive use of this
technique has been in Leuven where the
presence of 3 isomers was identified in Cu-
70.
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Ag-126 decay Red/blue spectrum 1s with the laser

on and the green spectrum is taken with the laser
beam blocked.

The lines at 262 and 426 are from the decay of
daughter Cd-126.

D Mo ~~uwl!~w-, Wy

I\
‘w QL R u.w‘w-mmw'i-wr‘m- o




Separation of isomers with hyperfine tuning of the
Resonance Ionization Laser Ion Source. HFS Measurement of 122Ag

The upper specrum was taken with the laser tuned
to the central frequency (44 on this scale) ionizing
both isomers.

ooof
st  T'he lower spectrum was taken with the laser
tuned off center (37) ionizing only the

high-spin isomer.
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I want to start with a RILIS story of the decay of Cu-70 levels
where the miracle of the hyperfine studies made it possible
to make sense of the decay of Ni-70 to levels of Cu-70
studied by Serge Franchoo 1n his thesis work in Leuven.

His thesis was defended in 1999 and there were data for Ni-70
that just did NOT make sense.

Finally, the RILIS hyperfine study of the Cu-70 decay made
sense of the data.

AND....make 1t possible to make some good sense of what
might be going on in Cu-76 and Cu-78.



What levels are expected in Cu-70?
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* Eight 1+ levels are expected. Strong beta decay
should be observed to those numbered 1 through
5. Those numbered 6 and 7 are L-forbidden, and
#8 should lie at a very high energy and play little
role 1in Ni-70 decay.

* Five 1+ levels were observed at just about the
energies and log ft values as will be suggested in
the next several slides. 3 of the four members of
the g-9/2 p-3/2 multiplet were identified with the
aid of the laser hyperfine studies.

* A paper presenting these results 1s in preparation
and should be available soon as J. Van
Roosbroeck et al.
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PHYSICAL REVIEW C, VOLUME 65, 024315

Magnetic moments of ®Cué™ and "°Cu®™1"2 nuclei measured by in-source laser spectroscopy

L. Weissman,* U. Koster, R. Catherall, S. Franchoo, U. Georg, and O. Jonsson
ISOLDE, CERN, 1211 Geneve 23, Switzerland

V. N. Fedoseyev and V. I. Mishin
Institute of Spectroscopy, Russian Academy of Sciences, RU-142190 Troitsk, Russia

M. D. Seliverstov
Petersburg Nuclear Physics Institute, 188350, Gatchina, St. Petersburg, Russia

J. Van Roosbroeck, 5. Gheysen, M. Huyse, K. Kruglov, GG. Neyens, and P. Van Duppen
Instituut voor Kern-en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium

(IS365 Collaboration and ISOLDE Collaboration)
(Received 18 September 2000; revised manuseript received 13 September 2001; published 16 January 2002)

We have obtained information on the atomic hyperfine splitting and, hence, on magnetic moments in
neutron-rich %Cu isotopes by scanning the frequency of the narrow-band laser of the first excitation step in
the resonance ionization laser ion source. The deduced magnetic moments are ,i.c(f’gCu"’J T=1%Y)=+2.48(2)
X(Mpey. p(BCu" I™=6")=+1244)(6)puy. and w(Cu"2,I"=1%)=+186(4)(6)uy, w[Cu®.I”
=(6")]=(+)1.50(7)(8) . The results of the scans analysis points out the existence of a new isomer,
Cu™., Its deduced magnetic moment is (—)3.50(7)(11) . in good agreement with the /™=3" assignment.
The method of in-source atomic spectroscopy. as well as the analysis of the obtained data, is described. The
results are discussed in terms of single-particle configurations coupled to the ®*Ni core.
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Single odd proton levels in Cu nuclides

Filling of N = 3 oscillator shell neutrons
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shell neutrons
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Magnetic moments of odd A-Cu isotopes
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N.J. Stone et al., DNP MSU 2002 RILIS NICOLE nuclear
orientation data.

Weissman et al DNP 2002 Cu-73 and Cu-75 showed lower moments
that support the notion that Cu-75 has a 5/2- spin and parity.
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Next, I want to review the status of the data for the RILIS
studies 1n the Sn-132 region.



A P, value in %
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new values in red

old values in black
hopeful values in green
new structure in blue
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Y. Jading et al., Nuclear Instruments and Methods B 126, 76 (1997).
T. Kautzsch, W. B. Walters, and K.-L. Kratz, AIP Conference Series 447, 1183 (1998).
M. Hannawald et al., Physical Review C 62, 054301 (September 25, 2000).
l. Dillmann et al., European Physics. Journal A 13, 281 ((March 2002).

T. Kautzsch et al., Physical Review C 54, R2811-R-2814 (December 1996).
T. Kautzsch et al., European Physics Journal A, 9 201-206 (October 2000).
J. Shergur et al., Physical Review C 65, 034313 (March 2002).
A. Wbhr et al., Proc. 11th Workshop on Nuclear Astrophysics, Ringberg Castle, Feb. 2002.

l. Dillmann et al., in press Physical Review Letters, 2003.
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K.-L. Kratz, B. Pfeiffer, F.-K. Thielemann,
and W. B. Walters, Hyperfine Interactions
129, 185-221 (November 2000).

B. Pfeiffer, K.-L. Kratz, F.-K.
Thielemann and W.B. Walters, Nuclear
Physics A 693, 282- 324 (October
8,2001)
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The big difference between 2000 and 2002 was the use of the
neutron converter which significantly lowered the spallation
production of 33Cs™. Thus, we could keep the beam gate open for
much longer periods of time and collect much more 33Sn.

Theoreticians had complained that the level scheme of 13>Sb was
not very detailed. Our new level scheme will be much more
detailed and should provide information about other low-energy
levels that are important to the testing of the model.
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We now have excellent data for the delayed-neutron time curve
for the decay of a relatively pure source of Sn-137. The weakness
in our analysis that I will discuss later comes from the absence of
good data for the growth and decay of the daughter Sb-137.
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The good news is that we ARE able to see 133Sn decay.
But, the background is large. The laser-on--laser off
difference 1s about less than 20%.
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Values in blue are from 2000, green 2000, improved in 2002, red, new in 2002.

A 133 134 135 136 137 138 139 140
T peas () 1.44 1.12 530(20) 275(25) 185(35) 200(80)

Pn(%) 2.9(2) 13(1)  21(5) 305  50(20) 50(20)

Qp MeV) 8.0 7.1 9.4 8.2 10.5 8.4 10.9 9.5
Qaudi 7.6 7.2 8.6 8.0 9.7 8.9 10.7 9.8
Typ(GT) (ms) 103 5 355 3000 950 800 480 390 120
Thpiyf (ms) 731 189 110 49 28 16
TGroote (MS) 312 493 327 116 77 37
T ¢trgr (ms)  [1996] 300 209 186 162 62 57
T ¢tsgr (ms)  [this work] 400 600 120 200 80 100

The lines S,, Qpp and TM(GT) are the published values from Moeller, Nix and Kratz. '
The TM(GT) half lives include only for the Gamow-Teller branches.

The values labeled Ty;i¢ and TGrpote Were taken from the compilation of Staudt et al. ™

i P. Moedller, J. R. Nix, and K.-L. Kratz, Atomic and Nuclear Data Tables 66 (1997) 131.
i A. Staudt et al., Atamic Data and Nuclear D ata Tables, 44, (1990) 79.




Counts/PSB pulse in the neutron detector nuclei producec

Laser on Laser off net 60% det 85% trans Pn corr.
Sn-136 875.3 4.9 870.4 1451 1707 3000
Sn-137 39.0 6.8 32.1 54 63 100
Sn-138 9.6 8.4 1.2 2 2 2

The background at A = 138 1s NOT large, the production is

just quite small.
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density. For details, see text.

The A =130 peak,
Sn-136.

The A =190 peak,
Sn-138.
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The two main features in the In-130 level scheme as known at
that time were the low energy for the 1+ level shown at 2120
keV, but expected near 1400 keV, and the possible 3+ level
at 388 keV. At that point we had not yet 1dentified the 388-
keV transition as a part of a large peak at 390 keV coming from
In-130 decay.

In a subsequent experiment at GSI, the isomeric transition in
In-130 was observed, as was a suspected transition in In-128.

With the positions of both the 1+ and 3+ levels established, it
1s then possible to follow the evolution of that energy difference
as neutrons are added to the nucleus approaching N = §2.



The transitions underlined in green were observed in MSU10135.

Probing neutron-rich In and Cd nuclei
with isomer spectroscopy

M. Hellstrom®?, M.N. Mineva®, A. Blazhev®*, H.J. Boa.rdma.nd: J. Ekman®,

J. Gerl®, K. Gladnishki®®, H. Grawe®, R. Page?, Zs. Podolyak® and

D. Rudolph® for the GSI-FRS-Isomer collaboration

Table 1: Properties of isomers observed in the present study:.

Isotope Im Observed delayed Half-life*" (us)

~-rays* |keV] This work Previous

ECd | (20/27) | 486,665, 720,743 14(2)

27Cd 7 820 1-10

1260, | (1) | 201,244,614, 865 20(2)

12Tn 7 221,233 <0.5 and 13(1)

1281y | (1) 248,323 >10 [4]

120, | (17/27) | 332,358,994, 1352 T1(1 2.0(5) [5)

1209, | 19/2+ | 382,570, 1136, 1324 3.0(1) 3.6(2) [5]

1305y | 107 07,301 1.5(1) 1.61(15) [6]

* Values are preliminary and may change as the analysis progresses.

" From fitting decay time distributions of the ~4-rays indicated in bold type.
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Alex Brown’s OXBASH separation for the 1*
g+ and 3+ 1s only 910 keV, which 1s about half of
the observed 1732-keV difference.

As beta decay to this 1* level 1s the main
1 _ driving force for r-process waiting-pont
Vaz,,7Tag,2 nuclides, this high energy for the 1* level

implies LONGER half-lives for N = 82
r-process 1sotones.

As E-beta for Cd-130 decay 1s about 6 MeV, a
15% lower energy would means a half-life

+ L.
3 that 1s twice as long.

Vda -~ 1 TCaa ,»—1 What saves the day here is that, along with the
3/2 99/2 :
higher energy for the 1* level, the Qg also
turns out to be about 1 MeV higher than
expected by many mass models. Two wrongs
can, sometimes, still get it right.



This graph incorporates the new mass for Cd-130 (Dillmann et al.) and
shows the strong drift of the higher observed masses (lower binding

energy) for the heavier Cd nuclides, consistent with a weakened
interaction. Note that it starts above Cd-124 (N =76 N/Z = 1.58).
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One of the reasons for disbelieving the rather sparse data for the levels
in Cd-128 1s their anomalous behavior as N = 82 1s approached.



Given the skepticism about the structure for Cd-128 that has
been presented, and to also provide some more insight into
structure of neutron-rich nuclides, I will show some data
from another source.



Data from the fantastic beta-gamma counting
system at MSU built by the Mantica group
and used for experiment MSU 1015 (2003).

Session DF - Nuclear Structure: 94 $\leq$ A < 160.
ORAL session, Friday afternoon, October 31
Canyon B, TM

[IDF.006] Level structures of *120Pd, *126Cd, and *128Cd from

beta decay and isomeric decay

W. B. Walters, N. Hoteling, J. Rikovska, J. Shergur (University of Maryland), P. F. Mantica, B. E. Tomlin,
B. A. Brown, A. D. Davies, A. Estrada, P. Hosmer, S. N. Liddick, T. J. Mertzimekis, F. Montes, A. C.
Morton, W. F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, H. Schatz, A. Stolz (NSCL, Michigan State
University), D. Seweryniak (Argonne National Laboratory)

Nuclides in the 114<A<129 mass region were studied at the NSCL following fragmentation of a 120-
MeV/A *136Xe beam. Time-correlated gamma-ray singles and coincidence spectra following both beta
decay and isomeric gamma decay were collected as a function of Z and A for the implanted fragments
using the MSU beta counting system and 12 SeGA Ge detectors. The first 2”+ level in “120Pd was
identified at 438 keV following beta decay of #120Rh. Previously reported gamma rays were observed
within 20 microseconds of implantation of #128Cd and *126Cd fragments. In addition, a new gamma ray
was observed at 219 keV in the decay of the “126Cd isomer. The structures of the even-even Pd and Cd
nuclides will be discussed in the framework of both the Interacting Boson Model and the Shell Model. This
work was supported by the U. S. NSF and U. S. DOE.
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The new data from MSU experiment 1015 in which the decay of
Rh-120 to Pd-120 was sought provided not only the new data
for the 2+ and 4+ energies in Pd-120, but confirmation of the
low 2+ energy in Cd-128.

Hence, the Cd data remain “ugly” in the sense that the 2+ energies
do not rise toward the n = 82 closed shell.

In contrast, the new data for Pd-120 are found almost exactly where
1996 IBM-d calculations had predicted.

On the next slide are shown the degree to which the rather complete
structures of the even-even Pd nuclides tend to mirror each other
around a 2+ minimum at Pd-114(N = 68).

The levels of the Pd nuclides have been broken down into a “shell
-model region caused by the N = 56 subshell, a transition region, and
a symmetric collective region centered at N = 68.
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I would like to conclude with a short summary
of what I believe 1s the “case” for the
weakening of the nucleon-nucleon
interaction for nuclides with high N/Z
where higher N/Z means over 1.6.

I would argue that the first sign of something new were the data
for Sn-134, 1997, but it has been the recent new data for B(E2)
values in Sn and Te found here at Oak Ridge that have made
such talk more respectable.
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Anomalous behavior of 2% excitations around **Sn
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In certain neutron-rich Te isotopes, a decrease in the energy of the first excited 27 state is accompanied by
a decrease in the E2 strength to that state from the ground state, contradicting simple systematics and general
intuition about quadrupole collectivity. We use a separable quadrupole-plus-pairing Hamiltonian and the qua-
siparticle random phase approximation to calculate energies, B(E2,0" —27) strengths, and g factors for the
lowest 27 states near 1*2Sn (Z =50). We trace the anomalous behavior in the Te isotopes to a reduced neutron

pairing above the N=_82 magic gap.

In this paper the argument 1s made for a reduced neutron pairing gap.
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As can be seen, the
2+ levels in the Hg
nuclides are also
significantly lower
than the adjacent
closed shell nuclides.

And, there 1s a slight
drop in energy as
N = 126 1s approached.
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in St clearly rises
as N =350 1s
approached.

6+t 2811

4% 2139
2+

2+

ot 0
88

A G

(n9g/2)™>

(vag/)™2
g+ 2958
6T 2859

4t 2230
2t 1854

2+ 1077

1817

8t 2887

1057

—

8+t 3589
6+ 3448

4% 3076

2t 2186

ot 0
90

4OZr 50

8% 5664 (rgq/p)+2
6" 4521 /2

2+ 1836

Sr

e 2T

+2
"90r2)" g+ 3300 (ngg/o)*2

6% 3304
6t 2958 (vd5/2vg7/2)

1847

4% 1495 (vds /2)+2
2t 934
ot 0
92

4ozr 52

8%t 5055

-2
] A
6+ 3495 "99/2)

(vds/ovg7/2)

2T 1892

4% 1656 )+2

(vdg/o
ot 832

ot 0

Sr




The question was raised as to how 2+ energies vary as the N = 82 shell
1s approached. Below is the chart showing how strange the behavior
of the 2+ energies in Cd are!!!
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I am not certain as to how to interpret these Cd radii. These
data go out to Cd-120. It certainly looks inviting to take advantage of
the good Cd RILIS yields to extend these out, at least to Cd-126.

They might be showing larger radii owing to the intruder admixtures.



It 1s possible to interpret the lowered 2+ energies in the even-even
Cd nuclides (lowered relative to the 1sotonic Te nuclides)

as arising from a lowered proton pairing, or, perhaps the proton
pairing 1s normal, and it 1s just a consequence of the lowered neutron
pairing noted in the previous paper!!!!

And, there are also the lowered total binding energies for all of the
Cd nuclides, relative to the FRDM masses. Perhaps FRDM is not
the best comparison, but those values are used extensively for
calculations where no data are available.

And, the absence of isomerism in Cd-130 and the suggested lower
energy for the 2+ energy in Cd-130. A reliable determination for

the 2+ energy in Cd-130 and B(E2) values for the heavy Cd nuclides
may be better measures for proton pairing in these nuclides.



Then, there 1s the position of the 1+ level in In-130.

The remedy in OXBASH i1s a significant lowering of the pn
interaction strength.....same as for Sn-134.

In other words, much of the new data for neutron-rich Cd and In
nuclides could be accommodated by lowered interaction strengths
for these very neutron-rich nuclides.



Where does RILIS go? Remember, RILIS gives chemical selectivity,
but it can’t beat diffusion.....as for Ni nuclides.

Each time we have started a new element, 2 or three new 1sotopes
have been found.

At ISOLDE, Cd-133 is in sight, In-136 and In-137 are possible
hopefully we will get better data for Ag-130, both neutron and
gamma ray data. From In-136 and In-137, we could get
structure in Sn-136, for example.

We are approved for antimony and should get Sb-137 and Sb-138
with neutrons. Cs-138 will overwhelm the gamma rays.

And, there was the Mn-66 study that revealed the low 2+ energy in
Fe-66 that provided strong evidence for deformation in Ca-48 to Ni-78
region. There 1s much more spectroscopy that could be done with Mn.



If TRIUMF 1nitiates a RILIS program, with their larger
beam currents, they might be able to move to more out one
two additional neutrons.

Thank you for your attention.



