The archetypal one-neutron halo nucleus ^{11}Be: controversy resolved.

- Long-standing controversy over the purity of states in ^{11}Be resolved using measurements at different energies.
- Impressive statistics and resolution achieved using a “batch-mode” beam of the long-lived isotope ^{10}Be.
- Transfer, elastic and inelastic scattering measured simultaneously to obtain a more complete picture of the reaction.
- Bound, halo states and low-lying resonances populated through a transfer reaction.
- “After … Auton measured these important spectroscopic factors, his results stood for a long time. Then several groups …, came along to muddy the water … lots of nonsense (was) written about $^{11}\text{Be(gs)}$. It is very good to see the return of sanity.” – reviewer Physical Review Letters

Contact: Dr. Kate Jones, University of Tennessee, 865-974-4022, kgrzywac@utk.edu
Funding sources: DOE Office of Science, Office of Nuclear Physics and NNSA (SSAA); National Science Foundation.
Resources: Holifield Radioactive Beam Facility, ORNL

Angular distributions of protons emerging from the transfer reaction on a beam of ^{10}Be reveal the nature of the ground state in ^{11}Be. The spectroscopic factor (S) extracted here for measurements at four different energies is much more consistent than reported previously.