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Existing data and projections, 2002
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* Extrapolation, size effect: empirical, order-of-magnitude estimates for full systems (LHe + electrodes)

“near saturated liquid [Hell] can be assumed in uniform field breakdown strength in the range of
LHe I” [1]

“high pressure can yield a considerably higher strength: up to 2x the strength, but considerable
lower pressurized LHe Il breakdown values of only 100 kV/cm at ambient pressure have been
communicated” [1]

[1] Gerhold, Cryogenics 38 (1998) 1063



Large high voltage system prototype at LANL
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Large system results at 2 K, 4.4 K

SF and 1.4 atm max
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Maximum potentials sustained

* Hand-polished (~ 1 um rms) Al electrodes, 40 cm diam.

« 8.2 liters superfluid at 2.14 K, 5.0 cm gap:

(290 + 40) kV — (58 * 8) kV/cm

* 10.5 liters Normal State (4.38 K), 6.4 cm gap:

(760 £ 70) kV — (119 + 11) kV/cm
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Further degradation below 1 K?

Pressure or temperature effect?

1. Cool large system with DR,
pressurize — difficult - medium-
scale experiment

2. Small, pressure-controlled
experiment



Adjustable-pressure HV cryostat

C.-Y. Liu, M. Karcz (1U)

* Small sealed inner LHe volume with HV electrodes, immersed in larger bath

* Small volume pressurized with cold He gas at top; outer bath cooled by pumping (1.6 K)
(G. Seidel)
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Adjustable-pressure HV cryostat

C.-Y. Liu, M. Karcz (1U)

* Small sealed inner LHe volume with HV electrodes, immersed in larger bath

* Small volume pressurized with cold He gas at top; outer bath cooled by pumping (1.6 K)
(G. Seidel)

A
Mensor-type
pressure gauge Ceramic
(mechanical) eedthrough
“Superfluid- Xregulator
tight” valve
Lower
outer TSensor /0C
volume Inner Lid T
thermal | Volume 4 e
sensor
bath \. He Vibration
Proof
i 4 Gap T- gas A Washers
@ sensor ‘ .
- Adjustable
@ CTRDD . Gap Sict
supply - :
8 _ ,
I/s
[washer-to-sidewall gap ~ 2cm]
v




P (torr)

Adjustable-pressure HV cryostat results

Hand-polished (~ 5 nm rms ?)
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* High breakdown strength preserved if system pressurized (even temporarily at 100 torr)

* Electropolished electrodes: Often recovers near lowest vapor pressure (no pressurization)

* Both effects consistent with breakdown initiation in vapor bubbles; can be suppressed



HV R&D: Four parallel efforts

. Design and construction of Medium Scale
HV(MSHV) test apparatus at LANL =» Electrode
tests, and tests with a cell between electrodes

. ldentification of candidate electrode materials.
. Initial tests using a small cryostat at IU (at 1.5 K)

. Study of the effect of presence of acrylic plates
and charge accumulation using the Kerr
constant measurement apparatus at UC

Berkeley.



New HV test apparatus at LANL

4 K LHe bath LN2 reservoir

1 K pot

Outer vacuum
chamber

3He pot 77K shield

CV heat

Evaporation valve
exchanger

Electrodes Central Volume

Inner vacuum
chamber

HV feedthroughs

Features

* 6 liter LHe volume is cooled
by a 3He fridge

 Electrodes size: ~12cmin
diameter

» Electric field: up to 75 kV/cm
in 2 cm gap

» Gap size adjustable between
0.5cm and 2.0 cm

 Lowest temperature: < 0.5 K

 Pressure: variable between
SVP and 1 atm

 Turn around time: 2 weeks

~, Purpose
"+ To study breakdown field

dependence on

» Electrode/cell material
 Temperature

* Pressure

 Gap size



10
CV and electrodes

The electrodes have the Rogowski shape

The first set of electrodes will be made of electro-polished stainless steel
The gap size is adjustable between 0.5 cm and 2 cm. The gap size was
determined as a compromise between fast turn around time and being
close to the nEDM experiment operating condition



Flow diagram
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Assembly and commissioning
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Temperature (K)

First full system cooldown (Aug 2012)
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Pressure control
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Mensor (mechanical) gauge is at RT and reads the CV pressure through a
thin capillary line

Capacitive level gauge inside the CV is sensitive enough to show the
change in dielectric constant due to pressure change and serves as an
internal pressure gauge.



Status and outlook

The first full system cooldown performed in August
2012

The CV was filled with LHe and cooled to 0.42 K

The CV LHe pressure was varied between SVP and
600 torr (atmospheric pressure at 7000 ft elevation)

Currently HV components (SS electrodes, HV feed,
HV feedthroughs) are being fabricated or prepared

The next cooldown will be with all the HV
components fully implemented and is scheduled for
mid November

The MSHYV system will extend the study done at
Sussex to lower temperatures, larger electrodes, and
larger gap size (closer to nEDM operating
conditions).
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Electrode materials R&D

Requirements:

* Electrode made of PMMA coated with conductive material

 Electrical resistivity: 102 Q/[1 < Rg < 108 Q/]

« Robust to thermal cycling and sparks

* Minimal activation due to exposure to neutron beam.

 Non-magnetic

« Fabrication techniques scalable to large (10x40x80 cm?3)
complicated 3D shape

Some possible coating materials
 Metal oxides, such as indium tin oxide
 Metal nitrides, such as titanium nitride
e Carbon paint

« GeCu

e |on implantation
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Effect of cell charging on electric field
D. Budker, B.-K. Park, G. Iwata (UCB)

Experimentally verify electric-field strength in a PMMA cell
under conditions similar to the nEDM experiment:

« measure E-field in PMMA cell in superfluid LHe
over 100s of seconds

« check for effects of potential dielectric relaxation
of PMMA

« check for effects of charge accumulation on PMMA
in the presence of ionizing radiation and the
effect of E-field reversal on accumulated charges

E-field is monitored using the Kerr effect in superfluid LHe
[Sushkov et al., PRL 93, 153003 (2004)]
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Effect of cell charging on electric field
D. Budker, B.-K. Park, G. Iwata (UCB)

PEM
polarimeter

birefringence

Preliminary result in LN2
COMpPENSAtors — e

cryostat

electrodes E-field in LHe causes birefringence,

An = KE?
with induced ellipticity,
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birefringence in beam path time (sec)
poses a challenge

* New cryostat (low-strain widows) + “double-pass” measurement technique:
reduce window birefringence drift

* LHe operation: early 2013



Summary
* The field strength of an 8L volume of 2.1 K SF LHe is at least 58 kV/cm

* Greater field strength of the large test cell at 4 K may be concern for 0.4 K, but there are
strong reasons for optimism:

* The field strength of pumped cells, with small volumes of SF LHe (above 1.6 K) can be
recovered by temporarily pressurizing, or spontaneously using highly polished electrodes

* Recovery is consistent with suppression of cavitation at electrode surfaces, which should
be reproducible in large systems below 1 K. Testing with specific materials under these
conditions is of critical importance.

* Parallel efforts to fabricate electrodes from candidate materials and test them in large
volumes of LHe below 1 K are underway

* A medium-scale cryostat, capable of cooling 6L of SF to 0.42 K at pressures from SVP to 1
atm, has been commissioned

* A separate experiment with Kerr-effect monitoring of E-field will assess effects of charge
accumulation on insulating test cell surfaces

e preliminary results anticipated by early 2013
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Discharge Voltage (V)
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Adjustable-pressure HV cryostat results
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Breakdown Voltage [V]

Adjustable-pressure HV cryostat: He gas breakdown

Breakdown V vs pd, 300 K Geometry satisfies minimum condition
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Adjustable-pressure HV cryostat: He gas breakdown

Breakdown V vs pd, 300 K
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Teflon insulator added: more unique gap
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Breakdown Voltage (V)

Adjustable-pressure cryostat: liquid/gas comparison
preliminary

Liquid Helium @ Saturated Vapor Pressure (gap = 0.04 cm)
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Breakdown in liquid vs gas helium
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