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Outline 

•  Method of the nEDM experiment  
•  Design of the experiment 
•  R&D 
•  Projected sensitivity  
•  Systematic controls 
•  Schedule 
•  Summary 
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nEDM Experiment Method Overview 

•  In situ production of UCN from 8.9 A cold neutron 
beam via superthermal process 

•  Higher electric fields expected to be achievable in LHe 
•  Use of 3He as comagnetometer  
•  Use of 3He as spin analyzer for the neutron 
•  Two complementary approaches to looking for the 

neutron EDM signal (effect of dE )  
–  Free precession method 
–  Dressed spin method 
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Experimental Concept: Golub& Lamoreaux, Physics Reports 237,1,1994 

Two techniques provide 
critical crosscheck of the 
EDM results with different 
challenges and systematics. 



• 8.9 Å cold neutrons get 
 down-scattered in superfluid 4He 
 by exciting elementary excitation 

• Up-scattering process is  
 suppressed by a large Boltzman  
 factor  

• No nuclear absorption 
  

R.Golub and J.M.Pendlebury, Phys.Lett.A 62,337,(77) 

Superthermal Production of UCN 

•  Expect a production of ~ 0.2-0.3 UCN/cc/s 
•  With a 500 second lifetime, ρUCN~100-150/cc and NUCN~3-4x105 

for each of the two 3 liter cells  



Comagnetometer 

•  We use polarized 3He atoms as comagnetometer. 
•  A comagnetometer is a polarized atomic species within 

the same storage volume as the neutrons that provides a 
nearly exact spatial and temporal average of the magnetic 
field affecting the neutrons over the storage period. 

•  Requirements for a comagnetometer: 
–  It does not have an EDM of its own. 
–  Short diffusion time (rapid sampling of the entire cell) 

•  3He as used in this experiment meets both requirements: 
–  3He atomic EDM: datm(3He) ~ datm(199Hg)/3000 < 10-32 e cm, 

Dzuba, et al. PRA 76, 034501 (2007). (See also Stetcu et 
al., PLB 665, 168 (2008).)  

–  3He diffusion in SFL4He: Lamoreaux et al. Europhys. Lett. 
58, 781 (2002) 
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3He as spin analyzer 
•  3He’s gyromagnetic ratio is larger than neutron’s by ~ 10% (γ3/γn ~ 1.1) 
•  Neutron absorption on 3He is highly spin dependent (σ>>σ) 

–  n+3He→p+t  
•  Reaction products of n+3He→p+t generates UV scintillation light (80 nm) 

in LHe. 
•  The UV light will be downconverted by a wavelength shifter and 

detected by PMTs. 

Spin dependent n-3He absorption reaction provides a measurement of the 
difference of the neutron precession frequency and the 3He precession 
frequency. 
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Free precession method 

neutron 
3He 

Change in magnetic field due to the rotating 
magnetization of 3He by SQUID 
magnetometers Pickup coils 

Measurement cell filled with SF 4He 

⊗ B 

A dilute admixture of polarized 3He atoms is introduced to the bath of SF 
4He (x = N3/N4 ~ 10-10 or  ρ3He ~ 1012/cc) as comagnetometer  

Signature of EDM appears as a shift in ω3-ωn corresponding 
to the reversal of E with respect to B with no change in ω3 

3He concentration needs to be adjusted to maximize the sensitivity 
•  Low concentration  small BR for capture events, weak SQUID signals 
•  High concentration  short storage time  



Dressed spin method 

•  By applying a strong non-resonant RF field, the gyromagnetic 
ratio can be modified or “dressed” 

•  Can tune the dressing parameter (X = γnBrf/ωrf) until the relative 
precession between 3He and neutrons is zero (X = Xc). 

•  Look for Xc dependence on E field  
•  Provides access to EDM that is independent of variations of the 

ambient B-field 
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A strong non-resonant RF field 
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T = 40 - 1040 s  UCN from Cold n 

T = 0 - 40 s  Fill 4He with 3He 

T = 1041 - 2041 s  Precession about E & B 

T = 1040 - 1041 s  π/2 pulse 

T = 2041 - 2421 s  Remove 3He 
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Spallation Neutron Source (SNS) at ORNL 

January 25, 2005 

1 GeV, 1.4 mA Proton Linac 

• SNS construction completed: 2006 
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Fundamental Neutron Physics Beamline (FNPB) 12 

External nEDM building 
(completed Nov 2009) 

Cold beam line 
8.9 Å monochrometer 

8.9 Å  beam line 



nEDM Experiment Schematic 13 

8.9 Å neutron beam 

6 m 

Upper 
cryostat 

Lower 
cryostat 

3 layer µ-metal shield 

3He services 

Central detector volume 
Magnet and shielding 
package 



Magnet System 14 

Uniformity requirements: 
•  Uniformity of 5 × 10-4 from relaxation times for the polarized neutrons and 3He 
•  < ∂Bx/∂x >   < 0.05 µgauss/cm, < ∂Bz/∂z >  < 0.1 µgauss/cm, < ∂By/∂y >   < 0.1 

µgauss/cm from geometric phase effects.  

B0 = 10 - 50 mG 

See R. Picker’s talk 



Central Detector System 
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7.5x10x40 cm3 UCN storage cell 
(inner surface coated with 
wavelength shifter loaded 
polystyrene to convert UV to visible) 

1200-L G10 
container for LHe 

PMT 

SQUID 
pickup loop 

3He valve 

Light guide 

HV electrode 
Ground electrodes 

3He/4He feed line 
HV multiplier 



3He Services 16 

Injection System 

Purification System 

Atomic Beam Source 
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Flushing 
Tube 
Valve 

Internal 
McClintock 

Purifier 

3He system block diagram  

•  Heat flush and diffusion methods is used to move 
3He 

•  3He flow is controlled by heaters, valves, and 
pressurizers. 

See S. Williamson’s talk 



R&D 

Need R&D in all areas: 
•  Electric field generation 
•  Magnetic shielding and magnetic field generation 
•  3He injection, transport, and removal 
•  Signal generation and detection (scintillation & SQUIDs) 
•  UCN production and storage 
•  Systematics control and mitigation 
 
Challenges 
•  Central detector module @ 0.3 –0.45K 
•  Magnet module @ 4K 
•  Eddy currents in conductors due to dressing field RF  
•  Stringent B-field uniformity requirements 
•  SQUIDs operation near HV 
•  Materials of cell and 3He transport must maintain neutron & 3He 

polarization  
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Selected R&D studies 
(Organized according to the related function) 

Electric field generation •  HV amplifier and initial HV test 
•  New HV test apparatus 
•  Electrode material selection 

Magnetic shielding and 
magnetic field generation 

•  1/7 scale prototype 
•  ½ scale prototype 

3He injection and removal •  3He diffusion coefficient measurement 
•  Development of 3He atomic beam source 
•  3He wall relaxation time 
•  SF tight 3He valves 
•  Superfluid film burner 

Signal generation and 
detection 

•  Room temperature light collection test 
•  LHe scintillation in a high electric field 
•  Full scale cryogenic light collection system prototype 
•  Initial SQUID noise test 
•  SQUID gradiometer development and test 
•  MC simulation of scintillation signal 

UCN production and 
storage 

•  FNPB simulation 
•  UCN storage time measurements 

Systematics control and 
mitigation 

•  Correlation function measurement 
•  Pulstar Systematics study apparatus 
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Color coding: BLACK = complete; RED = ongoing 



Focused R&D 

•  HV & electrode material 
•  Magnetic field uniformity & superconducting magnetic 

shielding studies 
•  Light collection from LHe scintillation 
•  Development of facility at PULSTAR for polarized 

UCN &3He test  
•  3He transport studies 
•  Other issues 

–  SQUID development and UCN storage studies 
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HV/Electrode R&D 
Goal 
Demonstrate that a sufficiently high electric field can be 
established in a region inside an acrylic cell sandwiched 
between two electrodes in a condition approximating the 
nEDM operating condition. 
 
Electrode material requirements 
•  Electrode made of PMMA coated with conductive material 
•  Electrical resistivity: 102 Ω/☐ < RS < 108 Ω/☐  
•  Robust to thermal cycling and sparks 
•  Minimal activation due to exposure to neutron beam. 
•  Non-magnetic 
•  Fabrication techniques scalable to large (10x40x80 cm3) 

complicated 3D shape 
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New HV test apparatus @ LANL 
21 

Outer vacuum 
chamber 

77K shield 

Inner vacuum 
chamber 

Central Volume Electrodes 

HV feedthroughs 

CV heat 
exchanger 

3He pot 

1 K pot 

LN2 reservoir 4 K LHe bath 

Evaporation valve 

Features 
•  6 liter LHe volume is cooled 

by a 3He fridge 
•  Electrodes size: ~ 12 cm in 

diameter 
•  Electric field: up to 75 kV/cm 

in 2 cm gap 
•  Gap size adjustable between 

0.5 cm and 2.0 cm 
•  Lowest temperature: < 0.5 K 
•  Pressure: variable between 

SVP and 1 atm 
•  Turn around time: 2 weeks 
Purpose 
•  To study breakdown field  

dependence on 
•  Temperature  
•  Pressure 
•  Gap size 
•  Electrode material 



New HV test apparatus @ LANL 22 

•  The first full system cooldown (without HV 
components) was performed in August 2012. 

•  The CV was filled with LHe and cooled to 0.42 K. 
•  The CV LHe pressure was varied between SVP 

and 1 atm.   
•  The next cooldown (with the HV components 

and first electrodes installed) is planned for early 
November. 

See J. Long’s talk 



½ B0 magnet and SC shield test @ Caltech 
Goals: 
•  Verity that the required field uniformity can be achieved at the operating 

field 
•  Characterize the shielding performance and stability of the SC shield 
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Recent results 

Normal 

Superconducting 

See R. Picker’s talk 



Full scale cryogenic light collection 
test @ ORNL 
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Factor  Value  %  
Error 

NXUV  4800  15 
εHV  0.76  5 
ΩTPB/4π  0.90  1 
εconv  0.33  19 
εcollect  0.21  5 
εcoated  0.92  5 
εendcaps  0.87  1 
εholes  0.97  10 
εgaps  0.78  5 
gAR  1.05  4 
εstraight-guide  0.64  3 
εbend  0.88  10 
εPMT  0.18  10 
#PE  14.8  32 

 

 
 
 

 
 

 
 

 

 Indirectly measured 
 Directly measured 

Current estimate of the #PE 
•  Based on calculations and measurements 

of individual loss factors 

Quartz light 
guides 

PMTs 



Full scale cryogenic light collection 
test @ ORNL 

•  Goal: demonstrate that 
there is a sufficiently high 
number of PE’s for neutron 
capture events 
 Cross check the estimate 

made based on calculations 
and measurements of 
individual loss factors 

•  Hardware under 
construction 

•  First results anticipated 
near the end of this year. 
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Full scale cryogenic light collection 
test @ ORNL 
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Dewar @ ORNL passed leak test, 
measuring heatload. 

Insert being fabricated at NSCU 

Optical isolator based PMT HVPS at IU 
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•  The scintillation yield reduces by ~ 15% @ 50 kV/cm. 
•  The data can be well described by the Jaffe-Kramers  columnar theory 

of recombination (G. Jaffe (1913), H. A. Kramers (1952)).  
•  The data were used to make a prediction on NEuv for  3He(n,p)3H. 

T. M. Ito et al., Phys. Rev. A 85, 042718 (2012)  
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Systematics study apparatus @ NSCU 
PULSTAR reactor 

•  A system that consists of a single full size 
measurement cell at the nEDM operating 
temperature. 

•  Long term goal: address key scientific issues 
–  Critical dressing 
–  Geometric phase studies 
–  Spin manipulation studies 

•  Short term goal 
–  UCN storage in the cell 
–  Insert and removal of 3He 
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See C. Swank’s talk 



SF film control test @ Harvard 29 

•  SF film need to be controlled for efficient 3He injection into LHe 
•  Performance of film burner is difficult to model  a test is 

needed to prove a given design 
•  First phase of the test complete 

Phase 1 test assembly on DR 
before IVC installation 

See S. Williamson’s talk 



SQUIDs for 3He Co-magnetometer Readout 
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To match statist. error of scint. 
signal, we need 
per 800 s measurement period. 
The goal is to be much more 
precise to not contribute 
significantly to the overall error. 

•  Required noise-to-signal ratio        
<< 1/rtHz 

•  Expected avg signal over half 
gradiometer: 2.3 fT 

•  The goal is ≤ 1fT/rtHz noise (referred 
to half gradiometer) 

•  If the noise in each gradiometer is 
uncorrelated, we win a factor √8 

•  Must meet the requirements under 
constraints from other experimental 
components 



“Remote SQUID” Configuration 
-  SQUIDs mounted outside the central detector volume and 

connected to pickups with long (~3.5 m) twisted-pair leads 

Gradiometer loops will 
be behind the ground 
electrodes 

SQUID packages in Nb pill 
boxes will be on outside of 
emergency vent pipe 

Pickup lead length: ~3.5m 



SQUIDs R&D @ LANL 

We are testing a candidate high-inductance SQUID: Star Cryoelectronics SQ2600. 
•  Based on intrinsic noise, it should work well. 
•  We plan to test performance with a pickup loop attached in a shielded room. 
•  Also, we will test for interference from e.g. PMTs. 
•  We are considering tests in the Caltech magnet/shielding prototype. 
•  Testing SQUIDs near HV is planned as future activity 
 

SQ2600 

G10 dewar in 2-layer magnetically-shielded 
room 



Neutron storage tests @ LANL 33 

See M. Cooper’s talk 

•  Utilizes currently operating 
LANSCE SD2 UCN source 

•  Test wall coatings and cell 
construction for UCN storage 

•  Cells developed at LANL and 
NSCU 

UCNA 

Storage time test 
apparatus 



Monte Carlo simulation studies by Kentucky, BU, 
UIUC, MS State, MIT, Caltech, NCSU, ORNL, LANL   

•  Cold neutron beam transport (GEANT4 and McStas) 
–  Provided cold neutron beam flux at the cell UCN 

production rate in the cell 
•  GEANT4 based cell simulation 

–  n-3He capture, neutron β decay, 2.2 MeV γ from  
UCN wall loss, cosmic ray background, ambient 
gammas 

–  PMT output generated 
–  Results used for sensitivity estimate and 

systematic studies 
–  Also generated mock data 

•  Neutron activation simulation 
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Simulated PMT spectra 
35 

•  Width of the neutron capture peak depends on the 
number of photoelectrons 

•  Scintillation efficiency for neutron capture events is   
~ 1/3 of that for beta decay (electric field effect may 
reduce the scintillation efficiency for beta decay) 



Main experimental parameters 
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Optimum parameters: collaboration goals based on reasonable projections 

! = 275 s,   ! fill = 614 s

Controllable parameters: Tm, Tf, τ3 



Statistical sensitivity estimate 
Free precession case 
•  Uncertainty in EDM depends on the uncertainty in the neutron 

precession frequency determination 

 
•  Extract scintillation frequency by fitting a decaying oscillatory 

function to the scintillation data. The uncertainty in the frequency 
extraction for a single measurement is given by 

 

•  Optimize the sensitivity by adjusting Tm, Tf, and τ3 

•  Results from analytical method and MC generated data agree 
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Statistical sensitivity estimate 
Dressed spin case 
•  At critical dressing: 

•  Optimize the sensitivity by adjusting Tm, Tf, τ3 , and modulation 
parameters (waveform, maximum angle). 
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Projected sensitivity 

•  Projected statistical sensitivity (limited by the neutron 
density in the storage cells): 
  90% CL σd< (3-5) × 10-28 e-cm in 300 live-days 

           (using the cold beam line) 
 
•  Dressed spin method gives a slightly better sensitivity  
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Projected systematic uncertainties 
40 

Error Source Projected systematic 
error (e-cm) 

Comments 

Geometric phase 
(linear E×v) 

< 2 x 10-28 Uniformity of B0 

Quadratic E×v < 0.5 x 10-28 E field reversal to 1% 

Pseudomagnetic 
field effects 

< 1 x 10-28 

 
π/2 pulse, compare two cells 

 Uncompensated 
leakage current effects 
(gravitational offset)  

< 0.2 x 10-28 Leakage current < 1 nA 

E×v from rotational 
UCN flow 

< 1 x 10-28 Uniformity of E, damping time of the 
rotational motion of UCN 

Heat from leakage 
currents 

< 1.5 x 10-28 Leakage current on the inner surface 
of the cell wall correlated with the E 

field direction 

Miscellaneous < 1 x 10-28 

See C. Swank’s talk 



Approaches to systematic effects 

•  Known effects 
–  Study the properties and possible size of the effects carefully 

(theoretical studies as well as necessary measurements). 
–  Incorporate features in the design of the experiment that eliminate 

or minimize such effects. 
–  Incorporate features in the design of the experiment that allow us 

to vary the size of such effects so that we can study 
–  When running the experiment, perform necessary measurements 

to characterize the effects (in situ or ex situ) 
•  Unknown effects 

–  Build enough “handles” in the experiment that can be varied. 
–  If unexpected effects are found, perform necessary 

measurements to characterize the effects (in situ and ex situ) 

The significance of a non-zero result requires multiple approaches to 
unforeseen systematics. 



Systematic controls 

•  Two cells with opposite E fields 
•  Free precession and dressed spin methods 
•  Study dependence on temperature, B-field, B-field 

gradient, and 3He concentration 
•  Ex-situ apparatus to study systematics 
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Schedule 

•  2012-2013: critical R&D program 
•  2013-2018: final design & construction  
•  2019 - : commissioning & operation 

43 



Summary 

•  A neutron EDM experiment at SNS is underway.  
•  The experiment at the SNS has unique and powerful 

capabilities for addressing some systematic effects. 
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Magnetic noise 
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