Towards a 0.1s Measurement of the Neutron Lifetime in a Magneto-Gravitational Trap

Chen-Yu Liu for the UCNτ Collaboration:

D. Bowman, S. Penttila (Oak Ridge Nat’l Lab)
E. Adamek, C. Cude, W. Fox, M. Hozo, C.-Y. Liu, N. Callahan, D. Salvat, J. Vanderwerp, B. Slaughter, K. Solberg (Indiana U.)
B. Vogelaar (V. Tech)
K. Hickerson (Caltech)
A. R. Young, E. Dees (NCSU)
Free Neutron Lifetime

Reanalysis of bottle experiments by Serebrov, et al.

Serebrov et al.,
(878.5 ± 0.7 ± 0.3) seconds

PDG 2010: 885.7 ± 0.8 s
PDG 2011: 881.0 ± 1.5 s
PDG 2012: 880.1 ± 1.1 s

Precision improves over time, but accuracy?
Search for Standard Model Parameters

\[\lambda = \frac{g_A}{g_V} \]

- Kaons + Unitarity [PDG 2010]
- ft(0^+ \to 0^+) [Hardy09]
- ft(0^+ \to 0^+) [Liang09 – DD-ME2]
- ft(0^+ \to 0^+) [Liang09 – PKO1]
- PIBETA [Pocanic04]
V_{ud} for unitarity test

- To approach the theoretical uncertainty of 4×10^{-4}, it requires experimental precision of $\Delta A/A = 4\Delta \lambda/\lambda < 1 \times 10^{-3}$ and $\Delta \tau/\tau < 0.4 \times 10^{-3}$.

\[f t (1 + \delta''_R) = \frac{K}{|V_{ud}|^2 G_F^2 (1 + 3 \lambda^2) (1 + \Delta_R)} \]

- model-independent external radiative correction, $\delta'_R = 1.466 \times 10^{-2}$
- model-dependent internal radiative correction, $\Delta R = 2.40 \times 10^{-2}$
- f: Phase space factor = 1.6886 (Fermi function, nuclear mass, size, recoil)
- From μ-decay: 0.8 ppm

\[|V_{ud}|^2 = \frac{4908.7 \pm 1.9 s}{\tau_n (1 + 3 \lambda^2)} \]
\(\tau_n \) feeds into other fields of physics

- Cosmology: BBN
- Astrophysics: Solar model
- Particle physics: Neutrino production from fission reactors

\[
Y_p = 0.228 + 0.023 \log \eta_{10} + 0.012 N_v + 0.018 (\tau_n - 10.28)
\]
Comparison of Techniques to Measure τ_n

<table>
<thead>
<tr>
<th>Technique</th>
<th>Lifetime extraction</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| **Neutron Beam** | Detect decay products (proton) from a beam with a well defined neutron fluence rate. | • Need to know absolute efficiency of the detectors.
• Absolute neutron flux (10^{-3}). |
| | $\frac{dN_p}{dt} = \frac{N_n}{\tau}$ | |
| **Material Bottle (UCN)** | Measure change in number of confined neutrons as a function of storage time. | • Loss mechanisms (wall interactions). Need to be controlled to better than 10%.
• Monte-Carlo unreliable.
• Spectrum evolution.
• Large draining time.
• Complicated orbits |
| | $\ln(N/N_0) = -t/\tau$ | |
| **Magnetic Trap (UCN)** | Count decay products (β) of magnetically trapped neutrons in real time. | • Poor SNR
• β-detector is prone to γ-Compton scattering background.
• Complicated orbits. |
| | $N_1/N_2 = e^{-\frac{(t_1-t_2)}{\tau}}$ | |
Material Bottle

A. Serebrov (2008)

D. Dubbers (2011)
Magneto-Gravitational Trap

- **Halbach array** provides field (along η) gradient for magnetic levitation.
- **Window-frame electromagnet** provides spin holding field (β guiding field) along ξ.
- **Gravity** bounds UCN from the top.

\[|B| = B_{rem}(1 - e^{-kd})e^{-ky} \]

Local Surface Coordinates

PM Array B along $\hat{\eta}$

Guide Coils B along $\hat{\xi}$

B-Field Ripple on Scan Path
UCN detector tubes

Halbach array

Switcher

UCN detector

UCN guide

Trap door

valves

trap door actuator
Strategy towards a 0.1 s Experiment

– Short Term Goal (2012-2013)
 •Prototype experiment at LANL
 •6 hours to get 1 s precision.
 •Measure trap lifetime
 •Detector R&D
 •Study the systematic effects
 – Spectrum dependence
 – Loss mechanism: spin flip, residual gas
 – Fluctuations in UCN flux, UCN spectrum, Spin polarization
 – Detector gain, detector dead-time corrections

 •0.1 s precision
 •1 month of statistics (or 2 weeks with improved UCN source density at LANL 35 ± 6 UCN/cm³ UCN/cm³)

A Neutron Lifetime Workshop will take place November 2012 in Santa Fe to identify the path forwards.
Asymmetric Trap \rightarrow Phase Space Mixing

- Low symmetry (together with field ripples) induces states mixing between circular orbits, through chaotic motion (or not).

- \rightarrow quick cleaning (\sim seconds) of the quasi-bound UCN with large tangential velocities.
UCN Tracking

$E_{\text{trap}} < E < E_{\text{trap}} + 6 \text{ neV}$
Renegade neutrons live longer than 50 s.

$\cos(\theta) = 1$: shooting up

$\cos(\theta) = 0$: skimming along surface
R&D: Vanadium solid-state detector

Segmented detectors to gain information on spatial distribution of UCN inside the trap.

Neutron scattering lengths and cross sections

<table>
<thead>
<tr>
<th>Isotope</th>
<th>conc</th>
<th>Coh b</th>
<th>Inc b</th>
<th>Coh xs</th>
<th>Inc xs</th>
<th>Scatt xs</th>
<th>Abs xs</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>---</td>
<td>-0.3824</td>
<td>---</td>
<td>0.0184</td>
<td>5.08</td>
<td>5.1</td>
<td>5.08</td>
</tr>
<tr>
<td>50V</td>
<td>0.25</td>
<td>7.6</td>
<td>---</td>
<td>7.3(1.1)</td>
<td>0.5</td>
<td>7.8(1.0)</td>
<td>60.(40.)</td>
</tr>
<tr>
<td>51V</td>
<td>99.75</td>
<td>-0.402</td>
<td>6.35</td>
<td>0.0203</td>
<td>5.07</td>
<td>5.09</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Negative UCN potential
- Good UCN absorber

\[^{50}\text{V} + n \rightarrow ^{51}\text{V} \] (stable)

\[^{51}\text{V} + n \rightarrow ^{52}\text{V} \rightarrow ^{52}\text{Cr} + \beta^- + \gamma \] (100%)

\[\beta : 1.073 \text{ MeV} , \gamma : 1.4 \text{ MeV} \]

\[T^{1/2} = 3.743 \text{ m} \]

\[1.4 \text{ MeV line} \]
Current Status
(Summer 2012)

- LDRD-funded R&D program funded the engineering design and partial construction of the prototype experiment.
- Vacuum chamber completed. Full-scale Halbach array in final stage of assembly.
- Holding field coils are constructed at IU & delivered to LANL.
UCN Source in Area B at LANSCE

Position for the Lifetime Experiment
Summary

• The Lifetime Workshop this fall
 – discuss technical issues, and develop a research strategy
 – a possible proposal

• Unique aspects of UCN\(\tau\) experiment:
 – Avoid material interactions
 – UCN in a Magneto-gravitational Trap
 – Only conservative fields are present. Monte-Carlo simulations are reliable.
 – Room temperature experiment with a large open top \(\rightarrow\) versatile detecting schemes possible.
 – Large trap volume, > 1 UCN cm\(^{-3}\) in the experiment (> 10 UCN cm\(^{-3}\) in the source), large statistics.

• Capitalize on the many years of experience & expertise, built up running the UCN source at LANSCE.
 – Will use operating UCN\(D_2\) spallation source at LANSCE (2012-2013)
 – Compatible beam-sharing with UCNA, B experiments