Integrating the S800 with other systems

Jeromy Tompkins NSCL

National Science Foundation Michigan State University

Overview

- Overview of DAQ systems involved
- Common Challenges
- Issues with timestamping
- Debugging
- Summary

The S800 Spectrograph

- Analysis Line PPACS
- Focal plane detector box:
 - Ion chamber (32 channels)
 - CRDCs (224 channel per CRDC)
 - Hodoscope CsI array (32 channels)
 - Fast scintillator (1 channel)
- Target position detector

The S800 DAQ

- ULM trigger logic module (fw: Daniel Bazin)
 - Accepts triggers for S800 + 3 other trigger sources
 - Internal busy OR
- Clock generator or receiver
- Master/slave run control modes
- Not NSCLDAQ software
- "Traditional" front-end electronics

Target DAQ

	VMUSB	DDAS
Style	Traditional	Digital
Hardware/Software interface	VMUSBReadout	DDASReadout
Timestamp mechanism	Latching scaler	Internal
Trigger	External NIM	External NIM / Internal
Busy	VMUSB produced	"None"
Hardware compatibility	Any VME device	XIA digitizers

Challenges to Unifying S800 + Target DAQ

- Establishing repeatable timestamp synchronization
- Trigger configuration
- Who generates the clock signal?
- Clock frequency
- Data format differences
- Debugging with system interdependence
- Global run control

"Vetoed Clock" Synchronization

- Controlled initialization order
- Clock only outputted when DAQ active

Issues with "Vetoed Clock" Synchronization

- At least one of the systems must be able to:
 - output an ON/OFF level to veto the clock
 - receive an external clock
- No standard means to do it
- **BETTER Solution:**
- All systems required to receive external clock
- All systems required to receive external clear
- Provide external clock generator that can provide a hardware clear

Frequency Discrepancies

System/Device	Max Input Frequency (MHz)	Output Frequency (MHz)
S800 ULM Trigger	40	10
S800 VME Timestamp Module	80	-
VMUSB	< 100 MHz	80
DDAS	?	50

Example: DDAS + S800 ; DDAS as clock generator:

- DDAS Output 50 MHz \rightarrow Downscale x4 \rightarrow 12.5 MHz to S800
- Meanwhile DDAS timestamps with its internal 100 MHz clock

Solution: user-defined timestamp calculation

Debugging the Unified System

- How to isolate systems?
- Trigger?
- Busy?

Summary

- Unification is the norm and is nontrivial
- Clock synchronization is a custom job every time... hope for standardized approach
- Hardware is more commonly the difficult aspect, software already pretty flexible
- How do we improve debugging?

S800 + VMUSB Data Flow

S800 + DDAS Data Flow

Tompkins - Coupling the S800 to Other Systems