Data Acquisition for Collinear Laser Spectroscopy

Paul Mantica
for the BECOLA Collaboration
BECOLA DAQ Initial Implementation

CSS GUI

Ethernet

VME: CPU + DAC

Ethernet

FPGA scaler

Beam cooler/buncher

Trigger signal

Trigger

PMT

Function generator

Bunch release signal

CEC

Variable time bins

FPGA-based time-resolved scaler

700 time bins

minimum bin width: 16 ns

width settings in 8 ns steps

Input signal

P. Mantica, FRIB DAQ Workshop, July 2015

FRIB Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University
BECOLA DAQ Upgrade

P. Mantica, FRIB DAQ Workshop, July 2015

CSS GUI

FrIB General Purpose Digital Board

FPGA-based time-resolved scaler
1024 time bins (max)
minimum bin width: 16 ns
width settings in 8 ns steps

Scaler gate

Input signal

Variable time bins

Linux PC

Ethernet

Ethernet

DAQ

DAC

FPGA

PMT

CEC

Cooler fill signal

Bunch release signal

14ch pulse-pattern generator for device control

Beam cooler/buncher

Cooler fill signal

Ethernet

Variable time bins

Scaler gate

Input signal
BECOLA DAQ
Where are we going?

- Eliminate need for intermediate PC
 - Introduce CPU into FPGA housing (local processing)

- Data packets
 - UDP protocol
 - Sequence-driven organization of data packets by driver
 - Transmitted across network

- Continue with CS-Studio GUI interface
 - Lab “standard”
 - Advantage of platform-independent operation
 - Access to parameters for DAC, Scaler, and data packets

- Analysis
 - On-line
 » Data stream “picked up” by CS-Studio
 » Histogramming using standard packages in CS-Studio
 » Displayed via GUI
 - Off-line
 » Data packets written to disk as binary files
 » Converted to text files (e.g., Mathematica)
 » Converted to ROOT files

FRIB
Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University

P. Mantica, FRIB DAQ Workshop, July 2015
BECOLA DAQ Performance

- **Data Transfer Rates**
 - 1 Gigabit Ethernet communication between FPGA and PC

- **Scaler Accumulation Rates**
 - Up to 100 MHz

- **Gating Limitations**
 - Up to 1024 identical scaler bins, or up to 64 configurable (non-identical) scaler bins
 - 16 ns minimum gate width, adjustable in 8 ns steps

- **Dead Time**
 - Dwell time as low as 16 ns (depends on gate settings)

- **FPGA functionality**
 - Lab “standard”
 - 16 fast inputs
 - 16 outputs (14 configurable pulse-pattern generator)

- **DAC functionality**
 - 1 output
 - 20 bits