

Solenoid Spectrometer DAQ Information

Calem R. Hoffman Argonne National Laboratory

crhoffman@anl.gov

Summary of DAQ Requirements

- Position sensitive detector (PSD) Si array
 - Collection of each hit (100Hz 5k Hz)
 - Energies from each channel (x300)
 - Times relative to common start (e.g., accelerator RF) (~1 ns)
 - Times relative to each other (~100 ns)
 - Trace readout may be beneficial (up to 2 us)
 - < 8 TB per week even with 2 us
- Ancillary detectors (Ionization chamber, MCP, gamma-, etc.)
 - Collect with valid PSD hit
 - Some level of "downscaled" singles collection (raw rates up to 1MHz)
 - Times relative to common start (~1 ns)
 - Times relative to valid PSD hits (~100 ns)
 - Pile-up handling (online or offline)
- Currently set to go into a fully digital system based on Gretina hardware with recent ANL modifications

Triggering and Data

- Two types of detectors:
 - Low-rate PSD Si
 - High-rate ancillary (Recoil or gamma-ray)
- Typically Low-rate PSD Si defines "master" triggering
 - Little need for elaborate triggering due to low counting rates
 - Singles triggering from total energy signal (< x100)
 - Ancillary collected in "slave" mode
- May require "down-scaled" collection of high-rate data
- Storage expectations (Digital System):
 - Without trace data required, storage amounts are small
 - With trace data 2 us based on event size of Gretina/DGS digitizers
 - 100 Hz per detector (x60 = 6k singles trigger rate)
 - < 3 MB per back plane (x5 digitizers per plane)
 - < 8 TB per week of running

Coupling other Detectors and Acc. Controls

- Plug directly into LBNL digitizers whenever feasible
 - Use of a third party module to assist in gain and offset matching
- Share time-stamp with "independent" system through MyRIAD type board
 - Working model already exists, e.g., Gretina at NSCL/ANL w/ Ancillary devices
- Need a common start/stop to extract cyclotron orbit times from PSD detector times
 - Presently use accelerator RF signal possible (and planned) with current digital system
 - Extract phase of RF clock readout through master trigger module

Analysis Needs

- Online:
 - Some level of "event" monitoring needed
 - Events comprised of all four (4) signals from a single PSD Si detector + correlated events (similar to a TAC) between PSD and ancillary recoil detector
 - Constant monitoring of the beam / targets
 - Trace analysis not needed online

- Offline:
 - Global event building from individual data, e.g., combing PSD signals and coincidences with ancillary devices
 - If trace data is deemed advantageous, large processing needed
 - Central computing / analysis center?
 - Otherwise, relatively simple data processing
 - ROOT framework preferred

Summary of DAQ Requirements

- Position sensitive detector (PSD) Si array
 - Collection of each hit (100Hz 5k Hz)
 - Energies from each channel (x300)
 - Times relative to common start (e.g., accelerator RF) (~1 ns)
 - Times relative to each other (~100 ns)
 - Trace readout may be beneficial (up to 2 us)
 - < 8 TB per week even with 2 us
- Ancillary detectors (Ionization chamber, MCP, gamma-, etc.)
 - Collect with valid PSD hit
 - Some level of "downscaled" singles collection (raw rates up to 1MHz)
 - Times relative to common start (~1 ns)
 - Times relative to valid PSD hits (~100 ns)
 - Pile-up handling (online or offline)
- Currently set to go into a fully digital system based on Gretina hardware with recent ANL modifications