ANASEN 2.0 & DAQ

1Louisiana State University 2Texas A&M University 3Florida State University 4IAEA

ANASEN Concept:
- Active gas target for α, p reactions
- Designed for “high” beam rates at FRIB
- Active Target Design 1.0
- Characterization

ANASEN 2.0
- Active Target Design Modifications
- Marriage of Caen 1730’s & “Conventional”
- DAQ Challenges/Needs
• Extended active gas target/detector
• He-CO$_2$ gas for (α,p) reaction studies
• Cylindrical proportional counter surrounding beam axis
 — 7\textmu m diam carbon fiber \rightarrow High Gain
• Over 1000 cm2 of Si (28+ det, \sim500 chan) w/ CsI & ASIC electronics (Sobotka et al.)

PC: 19 individual sensitive volumes
ANASEN Concept

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO$_2$ gas for (α,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7µm diam carbon fiber → High Gain
- Over 1000 cm2 of Si (28+ det, ~500 chan) w/ CsI & ASIC electronics (Sobotka et al.)
ANASEN Concept

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO\(_2\) gas for (\(\alpha\),p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7\(\mu\)m diam carbon fiber → High Gain
- Over 1000 cm\(^2\) of Si (28+ det, ~500 chan) w/ CsI & ASIC electronics (Sobotka et al.)
ANASEN Concept
Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO$_2$ gas for (α,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7μm diam carbon fiber \rightarrow High Gain
- Over 1000 cm2 of Si (28+ det, ~500 chan) w/ CsI & ASIC electronics (Sobotka et al.)

1. ΔE in PC \rightarrow particle identification
2. Position Si + Position PC \rightarrow θ_{lab}
3. Energy Si +θ_{lab} \rightarrow E_{cm}
ANASEN Concept

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO$_2$ gas for (α,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7μm diam carbon fiber \rightarrow High Gain
- Over 1000 cm2 of Si (28+ det, ~500 chan) w/ CsI & ASIC electronics (Sobotka et al.)

1. ΔE in PC \rightarrow particle identification
2. Position Si + Position PC \rightarrow θ_{lab}
3. Energy Si + θ_{lab} \rightarrow E_{cm}

Entire excitation function simultaneously measured
ANASEN 1.0 in Practice

Array for Nuclear Astrophysics and Structure with Exotic Nuclei

2x12 Super-X3 (4x4 Resistive)

End View w/o PC

New QQQ (16x16)

CsI

Side View

PC wires

RIB window

07/20/2011

Blackmon et al. FRIB DAQ Workshop ANL July 29, 2015 Slide 7
$^{14}N + ^4He \rightarrow ^{17}O + p$ ANASEN Test

- Stable beam test of approach for (α,p) reactions
- Stable ^{14}N beam from FSU tandem at 30 MeV (E_{cm}=6.7 MeV)
- He gas (1% CO$_2$) @ 350 Torr

- Clear proton identification
- Excellent E_{cm} reconstruction over forward angles, but degrades at larger cm angles

- Energy resolution consistent with previous width measurements ($\delta E_{cm} < 100$ keV)
ANASEN 2.0

Goals: improved PC resolution (z, t, E) and dynamic range

- 19 → 24 anode wires in PC (48 channels)
- Better MCP-RF timing for Particle ID
- 2nd stage linear amplification – MDU-16
- Caen 1730 waveform digitizers (500 MHz)
 - Long sampling times
 - PC signals not like Si/Ge

![Diagram of avalanche and ion drift]

- Avalanche → \(E_{\text{dep}} \)
- Ion drift → timing

![Graph showing preamp output over time](image)
ANASEN 2.0

Goals: improved PC resolution (z, t, E) and dynamic range

- 19 → 24 anode wires in PC (48 channels)
- Better MCP-RF timing for Particle ID
- 2nd stage linear amplification – MDU-16
- Caen 1730 waveform digitizers (500 MHz)
 - Long sampling times
 - PC signals not like Si/Ge

One challenge is mismatch of preamp signal size to digitizer dynamic range

- 2nd stage linear amplification:
 - Mesytec MDU-16

New low gain IC region for heavy ion detection
ANASEN 2.0

Goals: improved PC resolution (z, t, E) and dynamic range

- 19 → 24 anode wires in PC (48 channels)
- Better MCP-RF timing for Particle ID
- 2nd stage linear amplification – MDU-16
- Caen 1730 waveform digitizers (500 MHz)
 - Long sampling times
 - PC signals not like Si/Ge

Avalanche → timing

Ion drift → E_{dep}

Preamp + MDU-16 Output

Gains adjustable!

0.12x → 12x
Continue to use Wash U HINP ASICs for silicon
 • Lots (500+) channels available and it works!

Caen 1730 for PC:
 • Time-stamp events for event building with ASICs
 • Waveform analysis
 o Offline: Must keep rates low to swallow waveforms
 ➔ Not all PC signals are textbook
 ➔ New IC uses differential signals
 o Onboard: Customized firmware needed
 • Measurements of with 47K beam at NSCL in 2016?!

General thoughts:
 • New systems will continue to be developed
 • Old systems will not go away soon
 • Compatibility must be developed

Thanks:
 • Collaborators and Faculty/Staff at NSCL and FSU
 • The U.S. National Science Foundation and U.S. Department of Energy
 Office of Nuclear Physics
Waveform Analysis with Heavy-Ion Detector

Non Collecting

Collecting

Difference

Trapezoidal Filter

Derivative Filter

Second Derivative Filter