Distributed Digital Data Acquisition System with Network Time Synchronization

C. Cox, W. Hennig
XIA LLC, 31057 Genstar Rd, Hayward, CA
www.xia.com

Supported by DOE grant DE-SC0017223
Contents

- Motivation
- Approach
- SBIR Project
- Measurements
 - PTP
 - WR
- Next Steps
- Summary
Motivation

NP community => DOE => SBIR Solicitation for

“Software-Driven Network Architectures for Data Acquisition”

- Design for a distributed DAQ system
- Eliminate clock and trigger distribution networks
- Synchronize DAQ units via data network

Requirements for timing precision depends on experiment

- Background reduction by coincidence: Hundreds of nanoseconds
- Event building for detector arrays: Tens of nanoseconds
- Time of flight measurements: Sub-nanosecond
Distributed digital data acquisition system with network time synchronization

Approach

Existing Technologies

- **IEEE 1588 Precision Time Protocol (PTP)**
 - Time Stamping Units (TSU) built into several Ethernet MACs, physical layers (PHY);
 also into a few routers
 - Open source software for managing time synchronization (LinuxPTP, ptpd)
 - Reported time resolutions: milliseconds (software TSU)
 low nanoseconds (hardware TSU)

- **CERN’s White Rabbit (WR)**
 - Extension of PTP standard with synchronized Ethernet
 - Open hardware project
 - Reported time resolution: sub-nanosecond, even tens of picoseconds

XIA SBIR Project

- Adapt existing solutions (PTP and/or WR) to detector DAQ modules
 (Sounds simple, but has not been done before)
- Stay within standards, use open HW/SW environment, no “black box” for purchase
- Collaborate with scientists, open for new ideas
Distributed digital data acquisition system with network time synchronization

XIA SBIR Project Timeline

- Phase I (now)
 - Implement PTP
 - Test performance
 - Explore WR

- Phase II (2018)
 - Integrate WR
 - Software trigger scheme
 - Whatever you want
Distributed digital data acquisition system with network time synchronization

R&D Platform: Pixie-Net

- Latest in a family of DAQ electronics for nuclear physics
 - ~2000: DGF-4C
 Developed with GRETA related SBIR
 Patented technology for processing segmented HPGe signals
 Still used in Miniball, AGATA detector testing
 100/500 MB/s data bandwidth with PCI/PCIe
 Used in many smaller lab systems <10 channels
 - ~2005: Pixie-16, 2016: Pixie-32
 Low cost, high density, extensive clock/trigger capabilities
 Used in SeGA, VANDLE, CANDOR …

- Based on Zynq SoC: FPGA + ARM

 pulse processing
 Linux OS
 pulse heights, waveforms
 USB SD Ethernet webserver
Distributed digital data acquisition system with network time synchronization

- COTS Zynq board
- ARM runs Ubuntu 15
- SSH login to control DAQ
- Webserver displays results
- Data stored to USB drive, SD card, or network drive
- New for SBIR: Ethernet PHY with PTP TSU and clock output
Distributed digital data acquisition system with network time synchronization

Measurements (PTP)

The PTP PHY clocks
- ADCs capturing coincident scintillator pulses
- FPGA logic for time stamping pulses

If perfectly synchronized clock => zero variation in arrival time difference of coincident 511 keV gammas
If not => time difference varies over time
But also broadened by clock jitter, light collection variations, PMT transit time, noise, etc.
Distributed digital data acquisition system with network time synchronization

Preliminary Results (PTP)

2x LaBr with Na-22 source into 2x Pixie-Net synchronized over network (PTP)
XIA network
Direct connection (CFD)
P4e shared clock (CFD)

Not a SW report on network delay, or jitter of PPS reference signals, but measured time difference between coincident gammas

PTP
LaBr pair

FWHM Timing Resolution
- XIA Network: 251 ns
- Direct connection: 11.1 ns
- P4e shared clock: 0.78 ns
Distributed digital data acquisition system with network time synchronization

Measurements (WR)

Using commercial WR “black box” for time synchronization, standard Ethernet for data.

(Phase II: integrate WR into Pixie-Net, use the WR data link instead of ARM controlled Ethernet)
Distributed digital data acquisition system with network time synchronization

Preliminary Results: WR (with LaBr$_3$)

For LaBr, the WR synchronization matches timing resolution of P4e shared clock

(But need to improve detector, past P4e measurements were better)
Preliminary Results: WR (with Pulser)

For split pulser, timing resolution improves but WR not quite matching PN shared clock

=> Signal source matters!
Phase II Project

Phase I will result in a demo system with standard IEEE 1588 PTP, ~10ns resolution, White Rabbit compatible. Available with existing Pixie-Net. Suitable for less demanding applications.

In Phase II, aim for 10-100ps resolution by integrating White Rabbit into an upgraded Pixie-Net. Work with scientists to be compatible with HW and SW infrastructure developed locally. Collaborate in “open hardware” projects rather than trying to sell “black box” proprietary electronics.
Distributed digital data acquisition system with
network time synchronization

Summary

Explored PTP and WR network time synchronization for detector data acquisition electronics

Phase I is work in progress

<table>
<thead>
<tr>
<th>Month</th>
<th>Description</th>
<th>Time Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>ptpd software time stamping</td>
<td>17,966,000 ps</td>
</tr>
<tr>
<td>March</td>
<td>Zynq PTP hardware time stamping</td>
<td>1,310,000 ps</td>
</tr>
<tr>
<td>April</td>
<td>PHY PTP hardware time stamping, XIA network</td>
<td>398,000 ps</td>
</tr>
<tr>
<td>June</td>
<td>PHY PTP hardware time stamping, XIA network, LaBr</td>
<td>251,000 ps</td>
</tr>
<tr>
<td></td>
<td>PHY PTP hardware time stamping, PN-PN, CFD, LaBr</td>
<td>11,000 ps</td>
</tr>
<tr>
<td>July</td>
<td>WR clocking, CFD*, LaBr</td>
<td>900 ps*</td>
</tr>
<tr>
<td></td>
<td>WR clocking, sinc* pulser</td>
<td>600 ps*</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>goal</td>
<td>shared clock equivalent</td>
</tr>
</tbody>
</table>

Phase II plans

- Integrate WR
- Develop software for triggering and event building
- Collaborate with interested scientists

The ultimate goal is to reach the timing resolution of an optimized shared clock system (e.g. Pixie-500e: 7ps [1]) or what was reported for WR PPS measurements (6 ps [2]). Signal sources and timing algorithms need to be improved as well.

[1] WK Warburton et al, to be published
Questions?
Distributed digital data acquisition system with network time synchronization

Traditional Synchronization
Traditionally, time synchronization between multiple channels of digital data acquisition is accomplished by sharing clocks, clock reset signals, and triggers. With suitable algorithms (CFD), timing resolutions can be ~20 ps for idealized signals and a few hundred ps for detector signals digitized with 100-5000 MSPS.
Distributed digital data acquisition system with network time synchronization

Traditional
Crate with data I/O to host PC and local clock distribution

This Project
Independent modules with network data and derived clock
Distributed digital data acquisition system with network time synchronization

PTP synchronization

If d is the transit time for the Sync message, and $\tilde{\delta}$ is the constant offset between master and slave clocks, then

$$T1' - T1 = \tilde{\delta} + d \quad \text{and} \quad T2' - T2 = -\tilde{\delta} + d$$

Combining the above two equations, we find that

$$\tilde{\delta} = (T1' - T1 - T2' + T2)/2$$