Radioactive beams from e-beam driven photofission

eRIBs’07
Workshop
Jim Beene
ORNL
October 10, 2007
Outline

• HRIBF & some highlights of the n-rich research program
 – Motivation for an e-beam driver upgrade

• Photofission for RIB production: some advantages, some disadvantages

• Comments on properties and capabilities of a e-beam driven facility
HRIBF Post-accelerated Beams

175 RIB species available
(+26 more unaccelerated)
32 proton-rich species
143 neutron-rich species

Beam list increased by ~50% since 2003
The first transfer measurements on N=82 nuclei on / near r-process path

- yields, angular distributions of low-lying states measured
- first observation of $p_{1/2}$ state in 133Sn
- three other states in 133Sn measured, calibrated with 130Te(d,p)
- evidence for numerous states in 131Sn never seen before
- evidence that the $f_{5/2}$ level in 135Te is at a significantly higher energy

130Sn(d,p)131Sn - R. Kozub et al.
132Sn(d,p)133Sn - K.L. Jones et al.
134Te(d,p)135Te - S.D. Pain et al.

K. Jones
Decay spectroscopy of exotic nuclei

β-decay studies around 78Ni with postaccelerated (3 MeV/u) pure neutron-rich RIBs

Winger et al.

- Absolute beta-delayed neutron branching ratios for $^{76-79}$Cu and $^{83-84}$Ga
- Identification of new excited states in 77Zn, 78Zn, 82Ge, 83Ge, and 84Ge
- Systematics of single particle levels (e.g. neutron $s_{1/2}$) near doubly magic 78Ni

Range out unwanted high-Z contamination with high pressure & tape transport

Discovery of superallowed α-decay

$\delta^2(^{105}$Te)/$\delta^2(^{213}$Po) ~ 3

- Enhanced due to the same proton and neutron shell structure
- rp-process termination
- En route to 104Te $\rightarrow ^{100}$Sn

S. Liddick et al., PRL 97, 2006, 082501

109Xe \rightarrow 105Te \rightarrow 101Sn

105Te 53

101Sn 51
Pioneering studies with neutron-rich radioactive beams of heavy nuclei

Fusion & Fission
- Probing the influence of neutron excess on fusion at and below the Coulomb barrier
- Large sub-barrier fusion enhancement has been observed
- Inelastic excitation and neutron transfer play an important role in the observed fusion enhancement
- Important for superheavy element synthesis
- ERs made with 132,134Sn cannot be made with stable Sn

Coulex
- Probing the evolution of collective motion in neutron-rich nuclei
- Increasingly larger contributions of neutrons to $B(E2)$ values above 132Sn
- Recoil-in-Vacuum technique used to measure the g-factor for the first 2^+ state in 132Te:

\[\text{g-factor} \]

Liang et al., PRL 91, 15271 (2003); PRC 75, 054607 (2007)

Coulex of n-rich nuclei around $A=80$ at HRIBF

Particle-γ coincidence spectra

RIB $A=78 + ^{12}\text{C} @ 174.5$ MeV

$I = 1.4 \times 10^6$ pps

57.1% ^{78}Ge, 28.1% ^{78}Se, 9.9% ^{78}As, 4.9% ^{78}Ga

RIB $A=80 + ^{12}\text{C} @ 179$ MeV

$I = 1.4 \times 10^5$ pps

93.5% ^{80}Ge, 2.2% ^{80}Se

RIB $A=82 + ^{48}\text{Ti} @ 220$ MeV

$I = 5.5 \times 10^4$ pps

19.2% ^{82}Ge, 1.8% ^{82}As, 79% ^{82}Se

E. Padilla-Rodal et al.
PRL94, 122501 (2005)

Purified using $^A\text{GeS}^+$

$B(E2;0^+ \rightarrow 2^+) [e^2b^2]$

This work, SIBs

This work, RIBs

Adopted value, S. Raman et al.

Shell Model calculation

8 Managed by UT-Battelle for the Department of Energy
Coulomb Excitation of 84Se (N=50)

$E_{\text{beam}} = 193.2$ MeV; nat Al target
Beam composition: ~ 44% 84Se, ~ 56% 84Br, ~ 1% 84Rb
I(A=84) ~ 2-3 x 10^4 pps

FIG. 3. $E(2^+_1)$ and $B(E2)$ values for $N = 50$ isotones. The dashed and dotted lines correspond to SM calculations.
RISAC Science Drivers
& the electron driver

- **Nuclear Structure**
 - Probing the disappearance of shells
 - Spectroscopy & reactions in ^{132}Sn, ^{78}Ni regions
 - Evolution of collective motion
 - We can probe ^{112}Zr and ^{96}Kr regions (not ^{156}Ba)
 - Neutron Skins
 - Structure/reaction studies of the most n-rich species
 - SHE
 - Reactions with ^{132}Sn ($\sim 10^9$) and vicinity
 - For $Z=112$, $N=184$, reaction mech. Studies with $^{92,94}\text{Sr}$ ($10^6, 10^7$)

- **Nuclear Astrophysics**
 - Decay spectroscopy (βn, τ)

- **Stockpile Stewardship**
 - Surrogate reactions (n transfer, etc.)
HRIBF view of e-beam driver upgrade

- The discussion of a photo-fission driver that follows was developed based on specific considerations relevant to HRIBF

- We have particular boundary conditions:
 - A turn-key simple-to-maintain accelerator
 - A concept that “guarantees” a minimum level of performance without need of major targetry breakthroughs.
 - A capability dedicated to extending our reach toward very n-rich nuclei in a timely manner
HRIBF as a two driver facility

• We are developing a proposal for a turn-key electron accelerator (e-machine), capable of providing CW ~ 100kW beams with energies at or above 25 MeV.

• This accelerator would be dedicated to producing neutron-rich species by photofission of actinide targets.

• Such an accelerator is by far the most cost effective means to achieve in-target fission rates in the mid 10¹³/s scale.

• A comparable upgrade to our p-rich capability would be far more expensive

• Target development to support operation at >10¹³f/s (~50kW)is well in hand. Thus we are confident we can reach fission rates about 20 times larger than current HRIBF capability.

• The increase in fission rate is not, however a good comparative metric.
 – Photofission is a “colder” process than proton induced fission.
 – It results in lower actinide excitation, and less neutron evaporation from both the excited actinide system and the fragments.
 – Consequently production of very neutron-rich species can be enhanced by a substantial factor compared to 50 MeV proton induced fission, at the same fission rate.
^{238}U photo-fission is dominated by the GDR
238U photo-fission is dominated by the GDR

$<E> = 12.9$

$\nu_n = 3.5$
\(^{238}\text{U}\) photo-fission is dominated by the GDR

\[
\begin{align*}
\langle E \rangle &= 12.98 \quad (50) \\
\nu_n &= 3.5 \\
\langle E \rangle &= 12.81 \quad (25) \\
\nu_n &= 3.4
\end{align*}
\]
^{238}U photo-fission is dominated by the GDR

$\langle E \rangle = 12.98$ \quad $\nu_n = 3.5$ \hspace{1cm} (50),

$\langle E \rangle = 9.4$ \quad $\nu_n = 3.0$ \hspace{1cm} (12)
But photo-fission is not the dominant GDR decay channel

- (γ,n) and $(\gamma,2n)$ account for $\sim 2/3$ of GDR cross section
- Substantial $^{236,237}\text{U}$ production is inevitable

Data from Livermore and Saclay groups
Photofission yields

- 10^{13} f/s “easily” achieved
- About 20x current HRIBF
- But real gain >> 20x

$^{238}\text{U}(\gamma,f)$ systematics from Tsukada
(γ,F) from ORNL systematics + Jyvaskyla model
A sample comparison with data: Sn isotopes
Neutron multiplicities associated with fission are important figures of merit for our purposes

- **Proton induced fission at HRIBF energies**
 - $E_p=50\text{ MeV} \rightarrow \nu_n=8.5$
 - $E_p=500\text{ MeV} \rightarrow \nu_n\sim13$

- **Electron induced photofission:**
 - $E_e=25\text{ MeV} \rightarrow \nu_n=3.3$
 - $E_e=50\text{ MeV} \rightarrow \nu_n=3.4$

- **Neutron-induced fission is very similar in many ways to photofission.** $^{238}\text{U}(n,F) \oplus \sim15\text{ MeV}$ has final state properties very similar to $E_0=25-50\text{ MeV}$ photofission.
RIB production by photofission

\[\frac{10^{13} \text{ ph-f/s}}{10 \mu\text{A} 40 \text{ MeV p}} \]

eRIBs’07
Conservative target design for performance determination

\[\rho = 3 \text{ g/cm}^3 \]
\[d = 3 \text{ cm} \ (0.3 \ R_M) \]
\[t = 30 \text{g/cm}^2 \ 5X_0 \ (10 \text{cm}) \]
\[M = 212 \text{ g} \]

\[\rho = 6 \text{ g/cm}^3 \]
\[d = 3 \text{ cm} \ (0.6 \ R_M) \]
\[t = 30 \text{g/cm}^2 \ 5X_0 \ (5 \text{cm}) \]
\[M = 212 \text{ g} \]

\[X_0 = 6 \text{ g/cm}^2 \ (U) \]
Photofission target issues/ limitations

Direct bombardment

- e-beam directly incident on targets
 - If 10^{13} goal is to be met, beam energies less than ~80 MeV may give problems using current target technology without further testing and or development.
Fission rate and power in target

Effect of a converter

What it takes to make 10^{13} fissions/s
Photofission target issues
Converter + target

 Beam energy (MeV)
- 25
- 50
- 100
- 200

Power in target (kW): 10^3 fis. s$^{-1}$

Converter thickness (rad lengths, W)

Yield (fissions/cm3) $\times 10^4$

No converter
Beam energy MeV
- 25
- 50
- 100
- 200

3 cm diameter
3 g/cm3
What about even lower e-energy?

- For $E_e=12$ MeV, beam power > 200 kW is required to reach 10^{13} f/s
What about even lower e-energy?

- For $E_e \sim 12$ MeV, power deposited in target is $\sim 5x$ greater than for $E_e = 25$ or greater to reach 10^{13} f/s.
- Lower E^* may enhance n-rich yield.

27 Managed by UT-Battelle for the Department of Energy

eRIBs’07
An example of a somewhat more aggressive design

\[\rho = 6 \text{ g/cm}^3 \]
\[t = 30 \text{g/cm}^2 \ (5X_0) \]
\[M = 495 \text{ g} \]

2.3 x UC\(_x\) front surface area compared to 3 cm dia. Cylinder

Similar power required to reach \(10^{13}\) f/s (52kW @ 25 MeV)
Power Density in Targets

HRIBF
15 μA
50 MeV p

320 W/g

50 MeV p 0.75 kW (1.4x2 cm 2 g/cc)

~60 kW
50 MeV e

200 W/g

50 MeV e 55 kW (5x3 cm 6 g/cc)

10^{13} fissions/s

15 MeV p

Power density (W/g)

- 4.00E+02-5.00E+02
- 3.00E+02-4.00E+02
- 2.00E+02-3.00E+02
- 1.00E+02-2.00E+02
- 0.00E+00-1.00E+02

Power Density W/g

- 2.00E+02-2.50E+02
- 1.50E+02-2.00E+02
- 1.00E+02-1.50E+02
- 5.00E+01-1.00E+02
- 0.00E+00-5.00E+01
Power Density in Targets

50 MeV e- 48 kW (5x5 cm 6g/cc)

10^{13} \text{fiss./s}

80 W/g
Conclusions I: RIB production

- 10^{13} f/s can be achieved with an ~50 kW facility
 - Requires only modest sized targets to achieve initial goals
 - 3 cm x 5 cm (212 g)
 - <10 kW deposited in target
 - 25 MeV e beam can be used with converter
 - Additional technologies can be considered

- Substantially larger yields can be achieved with larger targets and higher beam powers
 - 500g to 1kg & 100-150 kW
 - What is release time?

- Even with thick converters, cannot isolate production target from beam power and still produce fission at high rates

- Pulsed e-beam can aggravate thermal and mechanical stress issues in target.
Conclusions II: Shielding

- Thick target bremsstrahlung:
 - $\theta_{1/2} \sim 100/E_0$ degrees
 - Forward angle γ dose rate
 - $D \sim 300 E_0 \text{ Gy h}^{-1} \text{ (kW m}^{-2}\text{)}^{-1}$
 - $D \sim 1.5 \times 10^7 \text{ Gy h}^{-1}$ at 1 m for 50 MeV, 1MW e beam
 - 6m concrete or ~1m Fe
 - 90° γ dose rate
 - $D \sim 70 \text{ (Gy h}^{-1}\text{)(kW m}^{-2}\text{)}^{-1}$
 - $D \sim 7 \times 10^4 \text{ Gy h}^{-1}$ at 1m for 1MW e beam ($E_0 > 20 \text{ MeV}$)

Photo-fission yield

In target

HRIBF UC target production rates
(produced via photofission of U-238 at 10^{13} fissions/second)
Photo-fission yield

From ion source

HRIBF beams directly from the ion source - unaccelerated beams
(produced via photofission of U-238 at 10^{13} fissions/second)
Photo-fission yield

Post-accelerated

HRIBF accelerated beam-on-target intensities
(produced via photofission of U-238 at 10^{13} fissions/second)
Science highlights with e-driver upgrade

→ Will test the evolution of nuclear structure to the extremes of isospin
→ Will improve our understanding of the origins of the heavy elements

Evolution of single-particle structure
Transfer reactions at 132Sn & beyond

Collective properties in extended neutron radii
Coulomb excitation near 96Kr

Reaction mechanisms for the formation of superheavy nuclei

Decay properties of nuclei at the limits
Crucial for understanding the formation of elements from iron to uranium
More to Come

• Alan Tatum will discuss
 – Discuss current status of HRIBF upgrade program
 – Discuss options for actual implementation of an e-beam driven facility that meets our requirements
 – Show preliminary facility layouts

• Dan Stracener will discuss target issues (the key to overcoming performance limitations, and going well beyond 10^{13} fissions second)
Conclusion

- Science with neutron-rich fission fragment beams is the keystone of our research program and will continue to be.
- An electron-beam based facility can produce intense beams in a cost-effective way.
- Such a facility would be competitive world-wide for neutron-rich beams until FRIB-scale facilities are available.
 - 10^{13} photo-fissions/second is a reasonable baseline to work from.
- Cost containment is critical – cost-effectiveness is a major part of the argument.
- There is a relatively short window during which such a facility is relevant.
Extra material
Decay studies pushing the frontier of n-rich nuclei

Examples with eMachine

<table>
<thead>
<tr>
<th>Ion</th>
<th>200 keV (ions/s)</th>
<th>Tandem (ions/s)</th>
<th>$t_{1/2}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{78}Ni</td>
<td>0.3</td>
<td>0.001</td>
<td>0.11</td>
</tr>
<tr>
<td>^{80}Cu</td>
<td>1000</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>^{81}Cu</td>
<td>7</td>
<td>0.3</td>
<td>?</td>
</tr>
<tr>
<td>^{82}Zn</td>
<td>5000</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>^{94}Br</td>
<td>1×10^4</td>
<td>100</td>
<td>0.07</td>
</tr>
<tr>
<td>^{96}Br</td>
<td>56</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>^{137}Sn</td>
<td>1800</td>
<td>45</td>
<td>0.19</td>
</tr>
<tr>
<td>^{138}Sn</td>
<td>89</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>^{137}Sb</td>
<td>9×10^5</td>
<td>2×10^4</td>
<td>?</td>
</tr>
<tr>
<td>^{140}Sb</td>
<td>980</td>
<td>17</td>
<td>?</td>
</tr>
<tr>
<td>^{149}Cs</td>
<td>2×10^4</td>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>

$t_{1/2}$ & βn rates for many r process nuclei are accessible

Energy levels test evolving nuclear structure
The evolution of single-particle levels and shapes in very neutron-rich nuclei beyond the N=50 shell closure

β-decay experiments with postaccelerated (3 MeV/u) pure neutron-rich RIBs, Oct-Nov 2006

<table>
<thead>
<tr>
<th>beam</th>
<th>$T_{1/2}$ (s)</th>
<th>main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>76Cu</td>
<td>0.65</td>
<td>β_n-branching ratio I_{β_n}</td>
</tr>
<tr>
<td>77Cu</td>
<td>0.46</td>
<td>I_{β_n}, ν-levels in N=47 77Zn</td>
</tr>
<tr>
<td>78Cu</td>
<td>0.35</td>
<td>I_{β_n}, I_π of 78Cu$_{49}$ revised</td>
</tr>
<tr>
<td>79Cu</td>
<td>0.19</td>
<td>$\beta_n\gamma$ decay observed first time</td>
</tr>
<tr>
<td>83Ga</td>
<td>0.30</td>
<td>$\beta_n\gamma, \beta\gamma$, $\nu s_{1/2}$ in N=51 83Ge</td>
</tr>
<tr>
<td>84Ga</td>
<td>0.08</td>
<td>2^+ in N=52 84Ge, $\nu s_{1/2}$ in 83Ge</td>
</tr>
<tr>
<td>85Ga</td>
<td>~0.07</td>
<td>rate of 0.1pps…</td>
</tr>
</tbody>
</table>

Jeff Winger et al.

eRIBs’07
The evolution of single-particle levels and shapes in very neutron-rich nuclei beyond the N=50 shell closure

Nov'06: experiment with 2 pps of 3 MeV/u 84Ga

84Ga \rightarrow 84Ge* \rightarrow 83Ge* ($\nu_{s_{1/2}}$) \rightarrow 83Ge ($\nu_{d_{5/2}}$)

84Ga \rightarrow 84Ge* (2+) \rightarrow 84Ge (0+)

β n γ

β-gated γ-spectrum (0.5 keV/ch)

N=51 83Ge

248 keV

N=52 84Ge

625 keV

β-gated γ-spectrum (0.5 keV/ch)
Transfer reactions: shell structure of n-rich nuclei

Single-particle states around closed shells provide a fundamental shell model test

Example: (d,n)-like reactions → neutron s.p. levels

Recoils detected in coincidence

protons detected in Si-array

\[^{132}\text{Sn}(d,p)^{133}\text{Sn} @ \text{HRIBF} \]

\[\text{Jones et al.} \quad 6 \times 10^4 \text{ ions/s} \]

Single-particle transfer near \(^{78}\text{Ni}\) and \(^{132}\text{Sn}\)

Reactions of interest

\((d,p)\)
\((^9\text{Be}, ^8\text{Be})\)
\((^3\text{He}, d)\)
\((^3\text{He}, \alpha)\)
\((^7\text{Li}, ^8\text{Be})\)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intensity (ions/s)</th>
<th>(t_{1/2}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{84}\text{Ge})</td>
<td>(3 \times 10^5)</td>
<td>0.9</td>
</tr>
<tr>
<td>(^{88}\text{Se})</td>
<td>(3 \times 10^4)</td>
<td>1.5</td>
</tr>
<tr>
<td>(^{96}\text{Sr})</td>
<td>(7 \times 10^4)</td>
<td>1.1</td>
</tr>
<tr>
<td>(^{98}\text{Sr})</td>
<td>(1 \times 10^4)</td>
<td>0.65</td>
</tr>
<tr>
<td>(^{134}\text{Sn})</td>
<td>(3 \times 10^6)</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{138}\text{Te})</td>
<td>(5 \times 10^6)</td>
<td>1.4</td>
</tr>
<tr>
<td>(^{140}\text{Te})</td>
<td>(2 \times 10^4)</td>
<td>?</td>
</tr>
</tbody>
</table>

eRIBs’07

\(E_p\) (channels) \(\rightarrow\) \(E_x\)
$^{13}\text{C}(^{134}\text{Te},^{12}\text{C})^{135}\text{Te}$ neutron transfer

Particle-gamma angular correlations

^{133}Sn ^{135}Te ^{137}Xe ^{139}Ba ^{141}Ce ^{143}Nd ^{145}Sn

E_γ (keV)

2109 keV

929

1180

657

1279

134 Te 2+

^{133}Te

424

$p_{1/2} \rightarrow p_{3/2}$

$p_{3/2}$

$\phi_{\gamma} - \phi_\phi$ [degrees]
Coulomb excitation in n-rich systems

Probes the evolution of collective motion in loosely-bound, neutron-rich nuclei

n-rich beams
C, Ti, Zr

target

Charged-particle
⊗
Gamma array

With eMachine: neutron-rich nuclei from N=50 to N=82 (and beyond) are accessible

<table>
<thead>
<tr>
<th>Ion</th>
<th>Intensity (ions/s)</th>
<th>t_{1/2} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84Ge</td>
<td>3×10^5</td>
<td>0.9</td>
</tr>
<tr>
<td>88Se</td>
<td>3×10^4</td>
<td>1.5</td>
</tr>
<tr>
<td>98Sr</td>
<td>1×10^4</td>
<td>0.65</td>
</tr>
<tr>
<td>136Sn</td>
<td>700</td>
<td>0.25</td>
</tr>
<tr>
<td>138Te</td>
<td>5×10^6</td>
<td>1.4</td>
</tr>
<tr>
<td>140Te</td>
<td>2×10^4</td>
<td>?</td>
</tr>
</tbody>
</table>
Heavy ion fusion reactions

Probes the influence of neutron excess on fusion at and below the Coulomb barrier → important for superheavy element synthesis

More n-rich projectiles

Further below barrier ^{134}Sn below 10 mb

Transfer reaction studies on the same system will help to understand reaction mechanism

Liang et al.
Unattenuated angular correlations: Theory & experiment

$^{130}\text{Te SIB}$

Hyball Ring 2

$W(\Delta \phi)$

$\theta_\gamma = 155^\circ$

$\theta_\gamma = 132^\circ$

$\theta_\gamma = 90^\circ$

$^{130}\text{Te beam}$

$^{12}\text{C recoil}$

scattered ^{130}Te stopped in Cu
Magnetic moment: RIV attenuated angular correlations
Neutron transfer reactions

Accessible at HRIBF

<table>
<thead>
<tr>
<th>Element</th>
<th>Accessible at HRIBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td></td>
</tr>
</tbody>
</table>

Accessible with e-machine

<table>
<thead>
<tr>
<th>Element</th>
<th>Accessible with e-machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Period</th>
<th>66</th>
<th>70</th>
<th>74</th>
<th>78</th>
<th>82</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coulex (1-step)

Accessible at HRIBF

Accessible w e-machine

Ce La Ba Cs Xe I Te Sb Sn In Cd Ag Pd

66 70 74 78 82 86
Multi-step Coulex

Accessible at HRIBF

Accessible w e-mach

Ce La Ba Cs Xe I Te Sb Sn In Cd Ag Pd

66 70 74 78 82 86
g-factor measurements

Accessible at HRIBF
Accessible w/e-mach

Ce La Ba Cs Xe I Te Sb Sn In Cd Ag Pd

66 70 74 78 82 86