Oak Ridge National Laboratory

Physics Division

Physics Division Seminars

Physics Division Seminars bring us speakers on a variety of physics related subjects. Usually these are held in the Building 6008 large Conference Room, at 3:00 pm on the chosen day, but times and locations may vary. For more information, contact our seminar chairman,

Alfredo Galindo-Uribarri
Tel (Office): (865) 574-6124  (FAX): (865) 574-1268


Thu., September 14, 2017, at 3:00 PM - 4:00 PM (refreshments served 2:40 PM)

Cosmic Ray Shower Simulation Study at a Global Scale and Associate Applications

Olesya Sarajlic, Georgia State University, Atlanta, GA
Bldg. 6008 Large Conference Room

Galactic cosmic rays are the high-energy particles that stream into our solar system from distant corners of our Galaxy and some from outside the solar system. The Earth atmosphere serves as an ideal detector for the high energy cosmic rays which interact with the air molecule nuclei causing propagation of extensive air showers. The primary cosmic ray particles interact with the molecules in the atmosphere and produce showers of secondary particles (mainly pions) at about 15 km altitude. These pions are decaying into muons which are the dominant particles of radiation (about 80%) at the surface of the Earth. In recent years, there are growing interests in the applications of the cosmic ray measurements which range from the space/earth weather monitoring, homeland security based on the cosmic ray muon tomography, radiation effects on health via air travel, etc. A simulation program (based on the Geant4 software package developed at CERN) has been developed at Georgia State University for studying the cosmic ray showers in atmosphere. The results of this simulation study will provide unprecedented knowledge of the geo-position-dependent cosmic ray shower profiles and significantly enhance the applicability of the cosmic ray applications. A simulation results are critically important for determining the temperature coefficients in every pressure layer in the atmosphere in order to calculate the temperature variations from the cosmic ray data. Using a single particle shower simulation, the weighted particle altitude distributions on a global scale is calculated with geomagnetic field implementation. The results of the simulation can aid the computation of the effective temperature in stratosphere.

Alfredo Galindo-Uribarri, (865) 574-6124