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RIB production techniques
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RIB production around the World
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Schematic of RIB Production at the HRIBF
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Holifleld Radioactive lon Beam Facility
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Effects of using ORIC as a Driver

e ORIC = Oak Ridge Isochronous Cyclotron
e Low beam energy = short range in targets
— less than 4 g/cm?for protons
— for p-rich, use compound nucleus reactions
e large ¢ (100’s mb), localized in energy
e limited to products close to the target nucleus
— for n-rich (fission), yield proportional to target thickness
— modest total beam power deposited in the target
— high local power density in target

e average power density for 45 MeV 1 kW p beam is similar to
that for a 100 kW 1 GeV p beam
e Few RIBs produced from a given target
— many target systems must be developed
— fission is a notable exception
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Characteristics of
Tandem Post-accelerator

e Simple, reliable, economical é
e Wide range of operating voltage 3
~ 1MV - 26 MV z
o Large Acceptance
— well suited to RIB source emittance
— weak dependence on injection E
— trans. eff. 15%-50% for gas stripping
e Excellent beam quality
— good energy resolution (E/AE >10%)
— low emittance (0.3-1.0 7 mm mrad)
o Easy energy variation
e Must double strip for A>80 E
— toreach E/A~5 MeV/amu (up to A~140) E
e Negative-ion accelerator a
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Radioactive lon Beam
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RIB Development and Testing Facilities

lon Source Test Facility | (ISTF-1)

— characterize ion sources (efficiency, longevity, emittance, energy spread,
effusion)

— some target tests (e.g. effusion through matrix)
— photodetachment tests with gas-filled RFQ ion cooler

lon Source Test Facility Il (ISTF-2)

— laser ion source
— ion source lifetime tests

On-Line Test Facility (OLTF)

— low intensity tests of target and ion source performance (release from
target, transport time to ion source, ionization efficiency)

— compatible with the RIB Injector and results are scaleable

High Power Target Laboratory (HPTL)

— target tests with high power beams from ORIC

— release measurements with larger target geometries
Facility for preparing target/ion source modules for the RIB
Injector (assembly and quality assurance)
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Target and lon Source Enclosure

A complete assembly that can be
manipulated by a remote handling
system

Assembled off-line and then moved to
the RIB Injector

Holds the target and the ion source

The target/ion source temperatures can
be varied independently

All TIS connections must be fed
through vacuum-tight fittings

Couples to both the ORIC and the RIB
Injector beam lines
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Tarqget holder and transfer lineto | on Source
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RIB Production Targets

o HfO, fibers (production of ’F and 8F)

e Uranium carbide (n-rich beams via proton-induced fission)
e Thorium oxide (different fission fragment distribution)

e Molten metals

— germanium for production of As, Ga, and Se isotopes

— nickel for production of Cu isotopes
e Ni pellets (°®Ni via (p,p2n) reaction — %Co contamination)
e Cerium sulfide (production of 33Cl and 34Cl)

— thin layers deposited on W-coated carbon matrix
e Silicon carbide (production of 22Al, 26Al, and 2°P)

— fibers (15 um), powder (1 um), thin layers on carbon matrix
e Aluminum oxide (production of 26Si and 27Si)

— thin fibers (6um) with sulfur added for transport
e Be sputter targets (mixed with copper, silver, or niobium)
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HfO, Fiber Target for Production of 1"1%F Beams

e Thin Fibers (5 um) - fast diffusion

e High porosity (density is 1.15 g/cm3)
e Refractory (m.p. is 2770 C)

e Free of volatile impurities

e 150(d,n)""F & 1%0O(a.,pn)'8F

e 4 rolls of HfO, cloth used for target

— 1.5 cm diameter x 1 cm thick each
— Range of 42 MeV deuterons is 1.6 cm

e Al,O; felt sheath

— Provides aluminum vapor
— Transported as AIF molecule
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HfO, Target Assembly
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UC, Coated RVCF

Uncoated RVCF Thickness: ~10 ym

(7] P P

UC Tarqgetsfor
Production of
Neutron-rich Beams

e RVC fiber diameter: 60 um

e Matrix density: 0.06 g/cm3

e UC coating thickness: 8 - 10 um
o Target density: 1.2 g/cm3

e Uranium thickness: 2.1 g/cm?

e Mass ratio is U:C is 6:1

o Atomic ratio is UC,
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UC/RVC Target Operation

e 50 daysof operation with target temperature greater than 2100 C
e 1200 hoursof 10-12 uA of 42 MeV protons

— 400 W deposited in target

— average power density is113 W/cc (97 W/g)
e Morethan 120 different radioactive beams extracted
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UC/RVC Fabrication Process

o Saturate RVC matrix with uranyl nitrate solution
e Heat to 300 C for a few hours (convert to uranium oxide)
e Repeat until the desired density of uranium is achieved

e Heat to 2000 C (convert to uranium carbide)

— additional carbon must be added so that the RVC matrix is not
compromised

.

no additional carbon added effect of ‘too much’ oxygen in UC target
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RIB vields from different actinide targets
Five different UC, targets and a ThO, target were tested

UC,-coated RVC
— low-density, highly porous carbon matrix (standard for HRIBF)
— density is 0.6 g/cm?3 to 1.2 g/cm3

UC, pressed-powder targets supplied by ANL

— uranium oxide powder mixed with graphite ?owder and converted at
high temperature to UC (density is 2.5 g/cm?3)

— uranium carbide powders mixed with graphite powder and pressed
e -200 mesh (< 74 um) UC powder, density is 5.2 g/cm3
e -325 mesh (< 44 um) UC powder, density is 6.0 g/cm3
e -400 mesh (< 37 um) UC powder, density is 5.5 g/cm3
ThO, pressed-powder target (density is 6.9 g/cm?3)

The pressed-powder targets
— quality is more reproducible
— are significantly cheaper to produce
— need to be tested at high power
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Comparison of production rates in 238U and 23°Th
(proton-induced fission with 40 MeV protons)
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Yields of Br isotopes using 40 MeV protons
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Measurements of holdup times to find fast-release targets

128-Sn holdup from UCx (ANL400) target

beam off

46 keV

!

beam off 75 keV

152 keV
482 keV
s F

l

30 40 50 60

time (min)

e Holdup times were recently measured
for several elements from several
production targets

— ANL-UC (-325 mesh)

— ANL-UC (-400 mesh)

— ORNL UC/RVC

— ThO, (pressed powder)

e Data is being analyzed with the help
of summer students and visitors
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Liguid Metal targets

e Liquid Ge (for Ga, As, and Se beams)
— Interacts with Ta (use graphite target holder)
— Surface tension is quite high
e Thin layers of Ge tend to coalesce into droplets

e Ge will wet a molybdenum surface but forms a eutectic,
destroys the substrate in just a few hours at ~1000° C

— Efforts to make a thin layer of Ge suspended on an open matrix
have failed

o qumd Ni (for Cu beams)
Reacts with most metals at relatively low temperature
— Molten Ni quickly destroys a Ta target holder at the melting point
(1453° C)
— Even a low concentration of Ni vapor will destroy a Ta tube in a few
hours at 1800° C (Ta thickness was 0.5 mm)

— Need an all-graphite target holder and ion source

OAK RIDGE NATIONAL LABORATORY
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On-line Testsusing SIC targets
(for the production of Al and 2°Al beams)

e 15 um diameter SiC fibers 288i( 0 a)25A|
e 1 pum diameter SiC powder e o
 SiC does not sinter Si(d,on)™Al

e Maximum operating temperature is 1650 C

o 25Al yields were about the same — 104 ions/sec/uA  “°Sj(p,2pn)*°Al

e Can increase yield significantly (x10) by adding 288i(d a)26A|
fluorine to system and extract as AlF :

|

SiC on CBCF

OAK RIDGE NATIONAL LABORATORY
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CeStarget on RVC matrix

e Thin layer of CeS (5 um thick) deposited onto a
tungsten-coated carbon matrix

— same matrix that is used for UC targets
e Maximum operating temp. is 1900 C

e Used to produce 33Cl and 34Cl beams

— 328(d,n)33Cl (T,, = 2.5 sec)

— 34§(p,n)**Cl & 34S(d,2n)34Cl (T,,, = 32.2 min)
e Initial on-line tests

— measured 104 ions/sec/uA of 34Cl

— extracted from ion source as AICI*

— very little Al vapor was present in the target

— nat§ ysed to make target (natural abundance of 34S is 4.2%)

e Targets showed no change during on-line test

OAK RIDGE NATIONAL LABORATORY
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Al O, target for production of S and #’Si beams

" Al(p,n)*’'Si
" Al(p,2n)*°Si

target holder (1.5 cm dia. x 7.6 cm)

e Max. operating temp. is1900 C
e Tested at 1750 C

"5,
g

e Measured yield of Si is2000 ions/sec/uA | | target after test

L8

e Observed as molecular ion (SIS')
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‘Be Production

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Lithium pellet
8 MeV protons )E
~10 pA
"Li(p,n)’Be

T,, = 53.3 days
produced ~300 mCi of ’"Be at TUNL
Be chemically separated from Li

cathode with ~126 mCi of 'Be was made
and pressed with Cu powder

two other cathodes with lower activity were
also made

negative ions produced in a Cs-sputter ion
source

Be yields were up to 2 x 107 pps on target
over a period of several days

beam energies ranged from 4 MeV up to
100 MeV

UT-BATTELLE
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RIB Production lon Sources

e Electron Beam Plasma lon Source (EBPIS)
— presently used to produce n-rich beams from UC target
— high positive ionization efficiency for many elements
— followed by Cs-vapor charge exchange cell (neg. ions)

— >1200 hours lifetime with 10 — 12 puA of 42 MeV protons on
target

o Kinetic Ejection Negative lon Source (KENIS)

— produces negative ions

— used for production of 17.18F beams

— may also be used for production of 33:34Cl beams

— >1200 hrs (3000 uAh) mean lifetime in beam (44 MeV 2H)
e Multi-sample, Cs-sputter ion source for ‘Be beams

— produces negative ions

— useful for long-lived activity

— the radioactive atoms are produced elsewhere, extracted from
the target material, and inserted into the ion source

OAK RIDGE NATIONAL LABORATORY
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Laser lon Source Experiments (Sept. 04 & Sept. 05)

e Laserion source set up and operated at HRIBF in collaboration with a
group from Mainz

e Three-step ionization of Sn, Ge, Ni, and Cu obtained
e Autoionization states found for Sn and Ge (higher ionization efficiency)

e Frequency quadrupling of the Ti:sapphire used successfully, for the
first time, to resonantly ionize Cu atoms

e Measured beam emittance of laser-ionized and surface-ionized beams
e Measured time profile of laser-ionized beams

e Overall LIS efficiencies:
— 22% for Sn (compared to 10% reported at ISOLDE)
- 3.3% for Ge
— 2.7% for Ni
— 2.4% for Cu

OAK RIDGE NATIONAL LABORATORY
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Laser setup for the initial test at the HRIBF

Laser beam into the hot =~ S

cavity through the
mass-analysis magnet

Ti:sapphire lasers
(supplied by the
Mainz group)

Nd:YAG Pump laser

(60 W, 10 kHZ, 532 nm)
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Sn lonization Scheme

11
<
£ 87 —— Laser Off
= Cs
[0
= 54
-
@)
c
S 2+
120 - 120
. —o— Laser On
<
=
I=
o
5
@)
c
S

Mass (amu)

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Al
IP

823,5nm/12143,29 cm™?

47235,2 cm?

811,4 nm/12324,37 cm™!

34914,2 cm

286,3317 nm/
3x 11638,06 cm!

3427,7 cm?
1691,8 cm?
Ocmt

UT-BATTELLE
34




Proton-rich Radioactive lon Beams

* Seven different targets used 5
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Avalilable Neutron-rich Radioactive lon Beams
(over 120 beams with intensities 21023 ions/sec)
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Radioactive Beams

Three factors affect the quality of the experiment
— RIB intensity
— purity of the beam
— selectivity of the detectors
The RIB intensity can be increased by
— increased production in the target
— faster diffusion and release from the production target
— higher ionization efficiency (ion source)
— better transmission (better emittance)
The beam purity can be improved using
— ion sourcery (selective ionization, temperatures, ...)
— chemistry (molecular ion transport, wall materials, ...)
— high-resolution mass separation

Detectors must be efficient, selective, and designed for low
intensities with relatively high backgrounds from decay of the beam

OAK RIDGE NATIONAL LABORATORY
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Production Rates for Sn, Sb, Te, and |

Isotopes in a UC target

Production Rate from proton-induced fission in uranium
(using 40 MeV protons)
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Pure Sn Beams

e Most of the neutron-rich Sn beams are contaminated
— A=132 beam consists of 85% Te, 14% Sb, and 1% Sn

e Solution: extract from EBP ion source as SnS*

o Sulfur is added to the UC target via H,S gas

e Yields of TeS* or SbS* ions are reduced by >104
— these molecules breakup at temperatures below 1500 C

e Convert SnS* to Sn-in a Cs-vapor cell

e Energy spread is ~400 eV (molecular breakup)

o Purified Ge beams are also provided using this technique (same
chemical family)
— for A=80, the Se beam was reduced by a factor of 300
— 80Ge beam purity went from 6% up to 95%

OAK RIDGE NATIONAL LABORATORY
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Purity of radioactive Sn Beams
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Purification of 8°Ge beam

Se
UUUUUU _ Cocktail beam ! 8 0
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Beam purification by photodetachment in RFO lon Cooler

Buffer gas
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RF Quadrupole
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RIB Analysis Beam Line at the HPTL
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Plans for Target Development at the HPTL

We need to significantly enhance the quality (intensity and purity)
of the available proton-rich radioactive beams at the HRIBF.

e New materials tests with high beam power deposition
— SiC and metal silicides (e.g. Zr;Si; Ta;Si; NbSi;) for 2>2Al beams
— CeS for 3334C| and 2°3°P beams

e New target geometries
— Small incident angle (8 deg.) -
— Thin liquids (Ge for ¢°As and p-rich Se beams)

— Thin solids for use with 34He production beams —
(A|203 — P, SIC e S, C — 150) . H—M]:

o Effect of rastering the production beam

— Increase intensity of 1"18F beams from HfO, (production beam presently limited to 3 pA due to
target damage)

— Important measurements to be made include ’F(p,y)8Ne, 8F(p,a)*0
— 1’F Beam-on-target is 1 x 107 pps — need about a factor of ten improvement
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Plans for Target Development at the HPTL

Other R&D efforts will focus on improving the quality of the
available n-rich beams from actinide targets.

e UC target tests
— Proton-induced fission vs. deuteron-induced fission (direct)
— Investigate 2-step targets (larger volumes)
— Higher density UC targets
e Measure release efficiency for short-lived isotopes
o Lifetime of high-density targets (e.g. pressed-powder targets)

o Actinide target materials (e.g. UB,, ThC, , low-density ThO,)

e |lon sources

— LaBg ion source to make pure Br and | beams (investigate long-term
poisoning with high intensity production beams)

— Close-coupled target to reduce effusion times

OAK RIDGE NATIONAL LABORATORY

UT-BATTELLE
U.S. DEPARTMENT OF ENERGY

45




HRIBF with IRIS2
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