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Outline

• Introduction
− Description of the ISOL technique
− Facilities around the world

• Holifield Radioactive Ion Beam Facility (HRIBF)
− Description and layout
− Accelerator systems

• Radioactive Ion Beams
− Targets and ion sources
− Beam intensities
− RIB purification techniques
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RIB production around the World



Schematic of RIB Production at the HRIBF
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Species Goal
Max. E Max. I Max. ε

p 60 MeV
@50 µ A

54 MeV 20 µ A 85%

d 50 MeV
@75 µ A

49 MeV 12 µ A 75%

3He 133 MeV
@200 µ A

- - -

4He 100 MeV
@200 µ A

85 MeV 10 µ A 45%

• Provides intense 
light-ion beams to 
produce radioactive 
species

• Produced first beams 
in 1962

• 1.5m, k=100, variable 
energy, multi-particle

• Proton energy 
presently limited by 
rf system
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Effects of using ORIC as a Driver
• ORIC = Oak Ridge Isochronous Cyclotron
• Low beam energy short range in targets

− less than 4 g/cm2 for protons
− for p-rich, use compound nucleus reactions

• large σ (100’s mb), localized in energy
• limited to products close to the target nucleus

− for n-rich (fission), yield proportional to target thickness 
− modest total beam power deposited in the target
− high local power density in target

• average power density for 45 MeV 1 kW p beam is similar to 
that for a 100 kW 1 GeV p beam

• Few RIBs produced from a given target
− many target systems must be developed
− fission is a notable exception
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25 MV Tandem 
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• Simple, reliable, economical
• Wide range of operating voltage

− 1MV - 26 MV
• Large Acceptance

− well suited to RIB source emittance
− weak dependence on injection E
− trans. eff. 15%-50% for gas stripping

• Excellent beam quality
− good energy resolution (E/∆E >104)
− low emittance (0.3-1.0 π mm mrad)

• Easy energy variation

• Must double strip for A>80
− to reach E/A~5 MeV/amu (up to A~140)

• Negative-ion accelerator

Characteristics of 
Tandem  Post-accelerator



• 300 kV (design) platform
• 2-stage mass separation

− M/∆M ~ 1000
− M/∆M ~ 20000 

• Robotic handling of 
activated targets and ion 
sources

Radioactive Ion Beam
Injector System
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RIB Platform
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RIB Development and Testing Facilities

• Ion Source Test Facility I  (ISTF-1)
− characterize ion sources (efficiency, longevity, emittance, energy spread, 

effusion)
− some target tests (e.g. effusion through matrix)
− photodetachment tests with gas-filled RFQ ion cooler

• Ion Source Test Facility II  (ISTF-2)
− laser ion source
− ion source lifetime tests

• On-Line Test Facility (OLTF)
− low intensity tests of target and ion source performance (release from 

target, transport time to ion source, ionization efficiency)
− compatible with the RIB Injector and results are scaleable

• High Power Target Laboratory (HPTL)
− target tests with high power beams from ORIC
− release measurements with larger target geometries

• Facility for preparing target/ion source modules for the RIB 
Injector (assembly and quality assurance)
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Target and Ion Source Enclosure

• A complete assembly that can be 
manipulated by a remote handling 
system

• Assembled off-line and then moved to 
the RIB Injector

• Holds the target and the ion source
• The target/ion source temperatures can 

be varied independently
• All TIS connections must be fed 

through vacuum-tight fittings 
• Couples to both the ORIC and the RIB 

Injector beam lines
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Target holder and transfer line to Ion Source
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RIB Production Targets

• HfO2 fibers (production of 17F and 18F)
• Uranium carbide (n-rich beams via proton-induced fission)
• Thorium oxide (different fission fragment distribution)
• Molten metals

− germanium for production of As, Ga, and Se isotopes
− nickel for production of Cu isotopes

• Ni pellets (56Ni via (p,p2n) reaction – 56Co contamination)
• Cerium sulfide (production of 33Cl and 34Cl)

− thin layers deposited on W-coated carbon matrix
• Silicon carbide (production of 25Al, 26Al, and 29P)

− fibers (15 µm), powder (1 µm), thin layers on carbon matrix
• Aluminum oxide (production of 26Si and 27Si)

− thin fibers (6µm) with sulfur added for transport
• 7Be sputter targets (mixed with copper, silver, or niobium)
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HfO2 Fiber Target for Production of 17,18F Beams

• Thin Fibers (5 µm) - fast diffusion
• High porosity (density is 1.15 g/cm3)
• Refractory (m.p. is 2770 C)
• Free of volatile impurities
• 16O(d,n)17F & 16O(α,pn)18F
• 4 rolls of HfO2 cloth used for target

− 1.5 cm diameter x 1 cm thick each
− Range of 42 MeV deuterons is 1.6 cm

• Al2O3 felt sheath
− Provides aluminum vapor
− Transported as AlF molecule
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HfO2 Target Assembly

2µm
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UC Targets for
Production of 

Neutron-rich Beams

• RVC fiber diameter: 60 µm
• Matrix density:  0.06 g/cm3

• UC coating thickness: 8 - 10 µm
• Target density: 1.2 g/cm3

• Uranium thickness: 2.1 g/cm2

• Mass ratio is U:C is 6:1
• Atomic ratio is UC3
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UC/RVC Target Operation

• 50 days of operation with target temperature greater than 2100 C
• 1200 hours of 10-12 µA of 42 MeV protons

− 400 W deposited in target
− average power density is 113 W/cc (97 W/g)

• More than 120 different radioactive beams extracted
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UC/RVC Fabrication Process

• Saturate RVC matrix with uranyl nitrate solution
• Heat to 300 C for a few hours (convert to uranium oxide)
• Repeat until the desired density of uranium is achieved
• Heat to 2000 C (convert to uranium carbide)

− additional carbon must be added so that the RVC matrix is not 
compromised

effect of ‘too much’ oxygen in UC targetno additional carbon added
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RIB yields from different actinide targets
• Five different UCx targets and a ThO2 target were tested

• UC2-coated RVC
− low-density, highly porous carbon matrix (standard for HRIBF)
− density is 0.6 g/cm3 to 1.2 g/cm3

• UCx pressed-powder targets supplied by ANL
− uranium oxide powder mixed with graphite powder and converted at

high temperature to UC (density is 2.5 g/cm3)
− uranium carbide powders mixed with graphite powder and pressed

• -200 mesh (< 74 µm) UC powder, density is 5.2 g/cm3

• -325 mesh (< 44 µm) UC powder, density is 6.0 g/cm3

• -400 mesh (< 37 µm) UC powder, density is 5.5 g/cm3

• ThO2 pressed-powder target (density is 6.9 g/cm3)

• The pressed-powder targets
− quality is more reproducible
− are significantly cheaper to produce
− need to be tested at high power
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Comparison of production rates in 238U and 232Th
(proton-induced fission with 40 MeV protons)
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Yields of Br isotopes using 40 MeV protons
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Measurements of holdup times to find fast-release targets
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• Holdup times were recently measured 
for several elements from several 
production targets

− ANL-UC (-325 mesh)
− ANL-UC (-400 mesh)
− ORNL UC/RVC
− ThO2 (pressed powder)

• Data is being analyzed with the help 
of summer students and visitors



Liquid Metal targets

• Liquid Ge (for Ga, As, and Se beams)
− Interacts with Ta (use graphite target holder)
− Surface tension is quite high

• Thin layers of Ge tend to coalesce into droplets
• Ge will wet a molybdenum surface but forms a eutectic, 

destroys the substrate in just a few hours at ~1000° C
− Efforts to make a thin layer of Ge suspended on an open matrix 

have failed

• Liquid Ni (for Cu beams)
− Reacts with most metals at relatively low temperature
− Molten Ni quickly destroys a Ta target holder at the melting point 

(1453° C)
− Even a low concentration of Ni vapor will destroy a Ta tube in a few 

hours at 1800° C (Ta thickness was 0.5 mm)
− Need an all-graphite target holder and ion source
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On-line Tests using SiC targets
(for the production of 25Al and 26Al beams)
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• 15 µm diameter SiC fibers
• 1 µm diameter SiC powder
• SiC does not sinter
• Maximum operating temperature is 1650 C
• 25Al yields were about the same – 104 ions/sec/µA
• Can increase yield significantly (x10) by adding 

fluorine to system and extract as AlF

AlpSi 2528 ),( α
AlndSi 2528 ),( α

AlpnpSi 2628 )2,(
AldSi 2628 ),( α



CeS target on RVC matrix

• Thin layer of CeS (5 µm thick) deposited onto a 
tungsten-coated carbon matrix 
− same matrix that is used for UC targets

• Maximum operating temp. is 1900 C
• Used to produce 33Cl and 34Cl beams

− 32S(d,n)33Cl  (T1/2 = 2.5 sec)
− 34S(p,n)34Cl & 34S(d,2n)34Cl  (T1/2 = 32.2 min)

• Initial on-line tests
− measured 104 ions/sec/µA of 34Cl
− extracted from ion source as AlCl+
− very little Al vapor was present in the target
− natS used to make target (natural abundance of 34S is 4.2%)

• Targets showed no change during on-line test
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Al2O3 target for production of 26Si and 27Si beams

target before test

SinpAl 2727 ),(
SinpAl 2627 )2,(

target after test

target holder (1.5 cm dia. x 7.6 cm)

• Max. operating temp. is 1900 C
• Tested at 1750 C
• Measured yield of 27Si is 2000 ions/sec/µA
• Observed as molecular ion (SiS+)
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7Be Production

8 MeV protons
~ 10 µA

Lithium pellet

7Li(p,n)7Be

• T1/2 = 53.3 days
• produced ~300 mCi of 7Be at TUNL
• Be chemically separated from Li
• cathode with ~126 mCi of 7Be was made 

and pressed with Cu powder
• two other cathodes with lower activity were 

also made
• negative ions produced in a Cs-sputter ion 

source
• 7Be yields were up to 2 x 107 pps on target 

over a period of several days
• beam energies ranged from 4 MeV up to 
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RIB Production Ion Sources

• Electron Beam Plasma Ion Source (EBPIS)
− presently used to produce n-rich beams from UC target
− high positive ionization efficiency for many elements
− followed by Cs-vapor charge exchange cell (neg. ions)
− >1200 hours lifetime with 10 – 12 µA of 42 MeV protons on 

target
• Kinetic Ejection Negative Ion Source (KENIS)

− produces negative ions
− used for production of 17,18F beams
− may also be used for production of 33,34Cl beams
− >1200 hrs (3000 µAh) mean lifetime in beam (44 MeV 2H)

• Multi-sample, Cs-sputter ion source for 7Be beams
− produces negative ions
− useful for long-lived activity
− the radioactive atoms are produced elsewhere, extracted from 

the target material, and inserted into the ion source
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Laser Ion Source Experiments (Sept. 04 & Sept. 05)

• Laser ion source set up and operated at HRIBF in collaboration with a 
group from Mainz

• Three-step ionization of Sn, Ge, Ni, and Cu obtained
• Autoionization states found for Sn and Ge (higher ionization efficiency)
• Frequency quadrupling of the Ti:sapphire used successfully, for the 

first time, to resonantly ionize Cu atoms
• Measured beam emittance of laser-ionized and surface-ionized beams
• Measured time profile of laser-ionized beams
• Overall LIS efficiencies:

− 22% for Sn (compared to 10% reported at ISOLDE)
− 3.3% for Ge
− 2.7% for Ni
− 2.4% for Cu
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Laser setup for the initial test at the HRIBF
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Nd:YAG Pump laser
(60 W, 10 kHZ, 532 nm)

Laser beam into the hot
cavity through the 
mass-analysis magnet

Ti:sapphire lasers
(supplied by the 
Mainz group)



Sn Ionization Scheme
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Proton-rich Radioactive Ion Beams
• Seven different targets used
• Three different ion sources
• 33 radioactive beams

2µm

HfO2 for 17,18F beams

CeS on RVC matrix for 34Cl
OAK RIDGE NATIONAL LABORATORY
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Available Neutron-rich Radioactive Ion Beams
(over 120 beams with intensities ≥103 ions/sec)  

E/A = 3 MeV/amuE/A = 3 MeV/amu
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Radioactive Beams
• Three factors affect the quality of the experiment

− RIB intensity
− purity of the beam
− selectivity of the detectors

• The RIB intensity can be increased by
− increased production in the target
− faster diffusion and release from the production target
− higher ionization efficiency  (ion source)
− better transmission (better emittance)

• The beam purity can be improved using
− ion sourcery (selective ionization, temperatures, …)
− chemistry (molecular ion transport, wall materials, …)
− high-resolution mass separation

• Detectors must be efficient, selective, and designed for low 
intensities with relatively high backgrounds from decay of the beam
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Production Rates for Sn, Sb, Te, and I 
isotopes in a UC target

Production Rate from proton-induced fission in uranium
(using 40 MeV protons)
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Pure Sn Beams
• Most of the neutron-rich Sn beams are contaminated

− A=132 beam consists of 85% Te, 14% Sb, and 1% Sn
• Solution: extract from EBP ion source as SnS+

• Sulfur is added to the UC target via H2S gas
• Yields of TeS+ or SbS+ ions are reduced by >104

− these molecules breakup at temperatures below 1500 C
• Convert SnS+ to Sn- in a Cs-vapor cell
• Energy spread is ~400 eV (molecular breakup)

• Purified Ge beams are also provided using this technique (same 
chemical family)
− for A=80, the Se beam was reduced by a factor of 300
− 80Ge beam purity went from 6% up to 95%
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Purity of radioactive Sn Beams
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Purification of 80Ge beam

Ga

Ge As

Se
Cocktail beam

Beam purified
with sulfur
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Beam purification by photodetachment in RFQ Ion Cooler
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RIB Analysis Beam Line at the HPTL

Object Slits
& Diagnostics Image Slits

& Diagnostics

Target/Ion Source

Quad 2

Quad 1

Beam Diagnostics

90° Magnet

Diagnostic End Station
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Plans for Target Development at the HPTL

We need to significantly enhance the quality (intensity and purity) 
of the available proton-rich radioactive beams at the HRIBF.

• New materials tests with high beam power deposition
− SiC and metal silicides (e.g. Zr5Si3, Ta5Si3, Nb5Si3) for 25,26Al beams
− CeS for 33,34Cl and 29,30P beams

• New target geometries
− Small incident angle (8 deg.)
− Thin liquids (Ge for 69As and p-rich Se beams)
− Thin solids for use with 3,4He production beams

(Al2O3 → P, SiC → S, C → 15O)

• Effect of rastering the production beam
− Increase intensity of 17,18F beams from HfO2 (production beam presently limited to 3 µA due to 

target damage)
− Important measurements to be made include 17F(p,γ)18Ne, 18F(p,α)15O
− 17F Beam-on-target is 1 x 107 pps – need about a factor of ten improvement 
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Plans for Target Development at the HPTL

Other R&D efforts will focus on improving the quality of the 
available n-rich beams from actinide targets.

• UC target tests
− Proton-induced fission vs. deuteron-induced fission (direct)
− Investigate 2-step targets (larger volumes)
− Higher density UC targets

• Measure release efficiency for short-lived isotopes
• Lifetime of high-density targets (e.g. pressed-powder targets)

• Actinide target materials (e.g. UB4, ThCx, low-density ThO2)
• Ion sources

− LaB6 ion source to make pure Br and I beams (investigate long-term 
poisoning with high intensity production beams)

− Close-coupled target to reduce effusion times

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

45



HRIBF with IRIS2
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