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Supernova!

Sk 202-69 SN 1987a
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Ejecta Rich in Heavy Elements

Hughes, Rakowski, Burrows & Slane 
2000

Supernovae from Massive Stars produce most of the elements 
from Oxygen to Calcium and half of the Iron/Cobalt/Nickel.  
They may also be responsible for the r-process.
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From where did our atoms come?
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Observing Supernova Neutrinos

SN 1987a

1045 W
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Gain Radius

Heating

Cooling

ν-Luminosity
Matter Flow

Proto-Neutron
Star

ν-Spheres

νe + n ←  p + e-

νe + p ←  n + e+
_

νe + n → p + e-

νe + p → n + e+_

Shock

Textbook Supernova
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Supernovae Modeling is Ongoing

Much Work Remains to do; 3D, General Relativity, Magnetic 
Fields, Nuclear Reactions, Equation of State, Neutrino 
Oscillations, …

Bruenn, …, Hix, … (2006)
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Radioactive Nuclei in Supernovae

✴ Core Collapse Mechanism
Nuclei present during 
collapse/above shock
Nuclear EOS

✴ Nucleosynthesis
Iron-peak 

56Ni,57Ni, 44Ti, etc.

p-process 

r-process
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History of Captures on Nuclei
Entropy of iron core is low 
(S/k ~1) so few free 
nucleons are present.  Thus 
e- and ν capture on heavy 
nuclei via 1f7/2⇔1f5/2 GT 

transition dominates. 
(Bethe,Brown, Applegate & Lattimer 1979)

During collapse, average 
mass of nuclei increases, 
quenching e- capture (at 
N=40). 

Thermal unblocking and first 
forbidden were considered 
but rates too small. 
(Fuller 1982, Cooperstein & Wambach 1984)

Implemented using average 
nucleus. Bruenn (1985)
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New e-/ν Capture Rates

Shell Model calculations 
are currently limited to 
A~65.

Langanke et al (2003) 
have employed a hybrid 
of shell model (SMMC) 
and RPA to calculate a 
scattering of rates for 
A<110.

Electron/neutrino capture on heavy nuclei remains 
important throughout collapse.

Langanke, …, Hix, … (2003)
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Effects of Nuclear 
Electron/Neutrino 
Capture during Core 
Collapse

There are 2 separate effects.

1) Continuation of nuclear 
electron capture at high 
densities results in lower 
interior Ye.

2) SMD rates result in less 
electron capture at low 
densities. 

Initial mass interior to the shock 
reduced by ~20%.

Hix, Messer, Mezzacappa, … (2003)

Shock is ~15% weaker.
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Effects on 
Shock propagation

“Weaker” shock is faster.

Gradients which drive 
convection are altered.

Maximum excursion of 
the shock is 10 km 
further and 30 ms 
earlier. Hix, Messer, Mezzacappa, … 2003
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PNS Convection

Fluid instabilities which 
drive convection result 
from complete neutrino 
radiation-hydrodynamic 
problem including 
nuclear interactions.

Hix, Messer, Mezzacappa, … 2003

Updated nuclear 
e-/ν capture restricts 
PNS convection to 
smaller, deeper region.
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Changes in Neutrino Emission

νe burst slightly delayed 
and prolonged.

Other luminosities 
minimally affected (~1%).

Mean ν Energy altered:

1-2 MeV during collapse

~1 MeV up to 50ms 
after bounce

~.3 MeV at late time

Hix, Messer, Mezzacappa, … 2003
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The impact of stellar mass

Higher mass cores have higher initial entropy.
Effects of nuclear electron capture are reduced 

but comparable (1/2 to 2/3).

15 M 25 M
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Testing the Sensitivity
Used Bruenn (1985) as a 
reproducible starting point.

Replaced quenching term 
with parameter (NpNh) = 
0.1-100

Changes from current 
electron capture rate of a 
factor of 10 move shock 
formation by ~0.1 solar 
mass.

Messer, Hix, Liebendörfer & Mezzacappa 2006
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Determining Ye and Entropy
Change in lepton abundance 
(Yl=Ye+Yν) occurs gradually 
over 2+ decades of density 
up to ~3x1012 g/cm3.

Beyond equilibration, 
variations in Ye reflect 
thermodynamic changes.

Entropy is flat until 
appreciable Yν is achieved 
allowing significant neutrino 
capture and heating then 
flattens after equilibration. 

Messer, Hix, Liebendörfer 
& Mezzacappa 2006
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Needed Electron Capture Rates

Nuclei with A ~ 120 contribute to e-/ν capture.

Many rates are needed, with declining quality 
needed with increasing mass. 
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What can RIBs say about e-/ν Capture?
Charge Exchange Reactions, 
e.g. (n,p),(d,2He),(t,3He),
also sample GT+ strength 
distribution, providing strong 
constraints on structure 
models.

Baümer et al. PRC 68, 031303 (2003)

For A=80-100 nuclei of 
interest are 2-6 neutrons 
richer than stability.

Current Experiments, on 
stable nuclei, agree well with 
shell model calculations for 
A<60.  

Should be achievable with NextGen RIBs.
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ν-Effects on Supernova Nucleosynthesis
1. Improved agreement with abundances of Sc, 

Cu & Zn observed in metal-poor stars. 
2. Reduction in over-production of neutron-rich Fe, Ni.
3. rp-process pattern of elements from A=64 to 80+.

Enhancement of 
waiting-point nuclei:
64Ge  64Zn
68Se  68Zn
72Kr  72Ge
76Sr  76Se
80Zr  80Kr
84Mo  84Sr

Similar Effects seen in 
GRB disks with low 
accretion rate. 
(Surman, McLauglin & 
Hix 2006)

Fröhlich, …, Hix, … (2006)
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νp-process
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How to get beyond A=64?
As Pruett et al. (2005) point out, true rp-process is 
limited by slow β decays, e.g. τ(64Ge)  = 64 s
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Neutrons in a proton-rich environment?

Main abundances: 
1H, 4He, 56Ni from 
p-rich and α-rich 
freeze-out.

(n,p) and (n,γ) 
“accelerates” β 
decays. 

Protons converted 
to neutrons via 
anti-neutrino 
capture.
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Detecting the r-process in old stars 

Sneden, et al. 2000, ApJL, 533, 139

Sneden, et al. 2000, ApJL, 533, 139
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Simulating the r-process
Uncertainties about the site of the r-process 
provide considerable latitude for modeling. 

Beun, McLaughlin, Surman & Hix 2006, PRD in press.
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R-process Data
• For most of the        

r-process, (n,γ)(γ,n) 
equilibrium holds.

• Much of what’s 
needed are masses 
and β-decay rates. 

• (n,γ) rates matter  as 
equilibrium breaks 
down.

Beun, McLaughlin, Hix, Surman & Blackmon 
2006, in preparation. 

To achieve desired accuracy of r-process predictions 
will require neutron capture rates, at least near 
stability.
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4) provide many masses and β-decay rates 
needed for the r-process, as well as selected 
measurements of (n,γ) and fission rates.

Next Generation Radioactive Ion Beams will:

2) provide important constraints on the 
properties of neutron-rich nuclear matter.

1) provide better constraints on nuclear structure 
relevant for electron and neutrino captures. 

3) allow measurement of most of the rates of 
interest to rp-processes, including the νp-
process, and iron peak nucleosynthesis. 

All of these are needed to better understand 
core collapse supernovae and their 
nucleosynthesis.


