D. Bazin
Lecture 2




Menu du jour

Semi-classical, WKB Cluster models

Eikonal, Glauber Phenomenological models
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Potential scattering theory
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o Differential cross section for elastic scattering: — 1f(6,0)]

e For any reaction channel (3: A(a,b)B
e Take infernal degrees of freedom of particles into account

e Total wave function:
1kgTg
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U(r) = 0 — (V2 4 k2)bo(r) = 0 — tho(r) = e

® Solution: plane wave + spherical waves generated by U
1 [ ik|lr — ']
A r— 1/

(k1) = e U(r')y(k,x')dr’
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e Asymptotic solution

lim ¥(k,r) = ¥
'r—>oo¢( ') Ar
® Scattering amplitude

£(6.6)= / T T (k, ) dr’
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/ e~ U )(k, ' )dr’
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Born approximation

or: fBA(0,0) = —E/eiq'r,U(r’)dr’

where = k — k’ is the momentum transfer

Born approximation is a first order perturbation approximation
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Distorted-wave Born
approximation (DWBA)

e Suppose we know the solution of the elastic equation

(V2 + k2)¢elas(r) — elas( )welas( )

e as outgoing waves (+) and incoming (time reversed) waves (-)

Uetas (I, ) S 1as e, ) = 90 (<, 1)
® The asymptotic solution can be expressed as

1kr
lim 9(k,r) = Y5 (k,r) — —— / P (K E ) Upter (2 )b (k, ) i’

r— 00 Amr

® and the scattering ampli’rude

f(0,0) = feas(0,0) — /%las “Usther (T 'W(k, r’)dr’
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1 =
fDWBA(H,qb) = —E/’Qbé )(kﬁ,rﬁ)*<b,B|Uother|aa A>¢&+)(ka7ra)dradrﬁ

elastic amplitudes for both entrance and exit channels has to be
Known!

usually calculated from optical potential fitted on elastic scattering
data

non-elastic reaction potential determined by reaction model
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Vo (r) = e (r) Y™ (6, )

e Simplify 3D Schrodinger equation into series of 1D radial equations

h? d*w, | R (0 +1)

2m dr? 2m 72

Wy — Ewg

with:  We(T) = TUp(T) AN centrifugal barrier




sin(kr — 50m)  §l7¢

1 ' — Y T 1N\, —tkr _ _ikr
klgnoo]g(kr) - kr - 2kr [( Lye - ]

e Asymptotic form of radial WF for a given partial wave

Elastic channel: 1im wg o (1) = % [(=1)%e™ ™" — G, ,e™Fe"]
r— 00

. . kar
Non-elastic channels: lim wu — 9 [Ya g, e'FB
lim g p(r) = =55, /5250

Partial wave scattering amplitudes: Sg, 6

Also called S-maftrix scattering matrix elements
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Scattering matrix and phase shn‘fs

S

B
® The S-matrix can be expressed in ferms of a phase shiff,
real for elastic scattering and complex for reactions:

S, = 2% lim uy g(r) = (kr)”'sin(kr — 24 + ;)

e The elastic and reaction cross sections:
@)
47T

s :
Ol = 13 Z(% +1)|S, — 17 = (2€ + 1)sin®6,




Illustration
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Partial wave summation

186.4MeV

50 !
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Things omitted so far

' _REPULSIVE,
~ COULOMB,
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ATTRACTIVE,
- NUCLEAR -

e Spin and isospin effects
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e Selection rules due +to
conservation of total
angular momentum
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e Motion of particles freated classically, but interaction freated

quantum mechanically

e Implementations

WKB approximation: discrete sum over partial waves replaced by
infegration over angular momentum - Legendre polynomials replaced
by their asymptotic form for large |.

Eikonal approximation: straight line frajectories further simplify
integrals of WKB approximation
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WKB approximation

® Phase shift

5 —

® 1o is the distance of closest approach

® Cross section equal to classical cross section

WKB
i o) = 2 (dfs@
d6 ~ [d6/db|,
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Eikonal approximation

e Can get total (not partial) wave function and scattering amplitude

® Scattering amplitude

_— . V(b—|—z’k) /
L /ezqu(r) 0l e 4= qr

~ 27h2

Projectile
SV

Target
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Optical model

e General form of the potential
U(r) = Ur(r) + Ur(r) + Up(r) + Us(r) + Uc(r)

e Real potential: Ug (1) = —V fws(r, R, a)
e using a Wood-Saxon form factor: =
2

1
fWS (T, R7 CL) — (r—R)

l4+e a
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important at high energy (more penetration)
® Spin-orbit potential

e Necessary to describe sca’r’rermg of polarized particles

Us(r):l-s( a ) Vldfws(rRs,as)

M C2 r dr

® Coulomb potential

212262

Uc(T) —
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Figure 11.18 Optical-model fits to ditferential cross sections (at left, shown as a
ratio to the Rutherford cross section) and polarizations, for 10-MeV protons
scattered elastically from various targets. The solid lines are the fits to the data
using the best set of optical-model parameters. From F. D. Becchetti, Jr., and G. W.
Greenlees, Phys. Rev. 182, 1190 (1969).
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6.10. The real-part of the nuclear contribution to three optical model potentials
which fit '°O+ *Zr elastic scatteting at E,.('*0) = 60 MeV. (From Becchetti,
F. D. et al, Nucl. Phys. A203 (1973) 1.)
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Global optical potentials

E=200 MeV

20 40 60 80 100A 120 140

Fig. 48. Volume integrals for neutron-induced reactions for the real central potential as a function of mass, plotted  Fig. 49. Volume integrals for neutron-induced reactions for the imaginary central potential as a function of mass,
at three different energies. The symbols correspond to the values of the local OMPs while the solid curves  plotted at three different energies. The symbols correspond to the values of the local OMPs while the solid curves
represent the global OMP (the curves in the deformed region, 148 < A < 194 can be discarded). represent the global OMP (the curves in the deformed region, 148 < A < 194 can be discarded).
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Transfer reactions

When elastic scattering data is not available, one can use global
optical potentials

Shape of differential cross section depends on angular momentum of
the transfered nucleon (identification)

The calculations use partial wave decomposition - convergence
obtained by increasing number of waves

Available codes: DW81, DWBA91-96-98, DWUCK4-5...

For example @ https://intra.nscl.msu.edu/programs
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Example: *°Fe(d,p)>"Fe

Fese(d,p) Fed7
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Spin-parity assignments

ol S -

particle .con’ﬁgura’rio;l in final state

do do 2Jf + 1 =
— = Dij P Siq ZSZJ_’”’J
<dgz)exp ’ ( >DVVBA & : )

dQ T 2J;+1

N N el x X "
o . " . . . " . N " . o - o " .
> A > | > Sl > s P A >
N . I X by £ wia e | s PR X by & i e . ) e
P | ) | P g |
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7.328 | 0.916 7/2-

2.796 | 0.699 3/2
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(@) INELASTIC (6) REARRANGEMENT
A(a,a’) A* A (a,b) B

(c) TWO-STEP REARRANGEMENT (d) INELASTIC + REARRANGEMENT
e.g. Ala,c)Clcb)B eq. Ala,a’) A*(a/b) B

Figure 4.27 Illustrating various types of multi-step processes which may occur in direct re-
actions. Each arrow indicates one action by the interaction potential V. The Born approxi-
mation takes into account only one such arrow
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Coupling to the continuum: CDCC

5/2+
1/2+

15
C S Y
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Cluster

Applicable at high energy projeciile
Straight line trajectories
Removal of valence nucleons

Stripping component in Kknockout
reactions (lecture 3)
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Complex reactions

High energy: depending on impact parameter, fragmentation
or multi-fragmentation of both nuclei with formation of hot
(participant) and cold (spectator) zones

Phenomenological and statistical models better suited fo deal
with complexity and strong couplings which occur in this
type of reactions

Liquid-drop model
BUU, AMD, ...
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HIPSE: a minimal approach

Basic idea: macroscopic/microscopic simulation of heavy ion
collisions at energies around the Fermi energy - event
generator

Simulation based on very simple rules (energy balance,
barrier constraints, etc..) and random exploration of the
phase space available during the collision

Vast amount of data well reproduced by this model:
complexity arise from simple rules and initial conditions
(chaotic behavior)
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Scenario

Fast Nucleosynthesis in
a dense matter
from microscopic
nucleons properties

1
-
v

Out from the dense matter :
Important Final State Interaction

The after burn phase :
desexcitation of the initial
phase-space
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Entrance channel

Participant-Spectator Nucleon Quasi-Participant
picture Sampling Quasi-spectator

Projectile

overlap
Zone

Importance of the Initial Fermi-motion Exchange of

geometry Frozen density particles
approximation
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Cluster synthesis in overlap region

Coalescence conditions 1-existence 2-proximity in position and momentum
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Final state interaction

After the reaction

Initial partition time (=50 fm/c)

test of fusion

S m— —

H= Z o (R = Ry|)

Class1cal dynamlcs

Before desexcitation

From nucleon
motion we obtain :

N, fragments o

(A Ly J Separation
with R

Two-by-two Fusion test

r (fm)

Energy balance and sharing
before desexcitation

EI:I = Q"'-EK +-Ep|:|t
'I'JE"=t +-E;r'|:|t

This defines the phase-space
before decay in-flight
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Xe+Sn @ 50 MeV/u

During the
in-flight
desexcitation

Maximum Final state
overlap interaction

t=50 fm/c t=300 fm/c
Before agg. After agg.

50 |

of

-50F

0 | | | T —100 L
—-20 —10 0O 10 —20 0 20 —20 V] 20 —100 =50 0 50

Y (fm) Y (fm) Y (fm) Y (fm)
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Three parameters

10 20 30
Relative distance (fm)

o Rate of exchange of particles
between farget and projectile

e Percentage of nucleon-nucleon
collisions in the overlap region
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e Central collision of Xe + Sn at 50 MeV/u

HIPSE simulation
t=4 fm/c

r-space

Color table : E*

1.5-3
345

-6

Xe+Sn_50A_MeV_b=0_fm
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Chemical and kinetic propertie

HIPSE calc. G. A. Souliotis, et al
PLB, 588 (2004) 35.

0
L < Y,
e e =) === 1

86K+ 112Sn

1.0 2.0 3.0
E*/A (MeV)

Bimodality ©
Isospin effects ©

Parallel velocity ©

Mean kinetic energy ©
Angular distribution ©

Charge distribution ©

Fluctuations of kinetic energy ©
Event by event correlations ©
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From compound to Fragmem‘s

Fragment mass before desexcitation
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Application to projectile
fragmentation

» HIPSE
—BUU.

Fragment A
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48Ca+%Be
40Ca+%Be

10
Neutron excess N-Z

Fragment A
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o Peripheral collision of Xe+Sn at 50 MeV/u

HIPSE simulation
t=1 fm/c

Total=2

O Lopaz - LPC Casn (2005)
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Availability

@® nlIPSE for nucleon-lon reactions

A large set of data is now available... and could be compared
with HIPSE.

http://caeinfo.in2p3.fr/theorie/theory_lacroix.html

Unix, Linux, Mac OS X
Ca+Ca 1 Million events per day
Xe+Sn 0.1  Million events per day
Au+Au 0.01 Million events per day

Thanks to
V. Blideanu, D. Durand, G. Lehaut, O. Lopez
A. Van Lauwe and E. Vient
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HIPSE simulation
t=3.5 fim/c
r-space

Color table : E*

Au+Au @ 60 A.MeV, b=5 fm (semi-peripheral collisions)
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HIPSE simulation
t=4 fim/c

r-space

Color table : E*

AutAu @ 60 A.MeV, b=10 fm (semi-peripheral collisions)
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