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Asymptotic Wave Function for elastic scattering

Incoming plane wave

Outgoing spherical wave

Scattering amplitude f

Potential scattering theory

58 Scattering theory

Target

Outgoing spherical waves exp(ikR)/R

Incoming plane wave exp(ikz)

Beam direction +z

Fig. 3.1. A plane wave in the +z direction incident on a spherical target, giving
rise to spherically-outgoing scattering waves

!k/µ, and of the scattered flux is

jf = v|A|2|f(θ, φ)|2/R2 particles/area/sec (3.3)
= v|A|2|f(θ, φ)|2 particles/steradian/sec, (3.4)

where the solid angle subtended by area a at radius R is a/R2 steradian
(sr). In Chap. 1, the cross section was defined as the ratio of scattered to
incident flux, so here

σ(θ, φ) = |f(θ, φ)|2 , (3.5)

which is independent of A, and has units of area/sr.

3.1.2 Partial wave scattering from a finite spherical potential

To find the scattering amplitude f(θ, φ) in terms of the projectile target
potential V (R), and hence the cross section, we consider first the case of a
spherical potential of finite range. That is the potential V (R) only depends
on the magnitude R, and that V (R) = 0 for R ≥ Rm, where Rm is the finite
range of the potential. Keep the z-axis as the beam direction as in Fig. 3.1.

The time-independent Schrödinger equation for the relative motion with
c.m. energy E is

[T + V − E]u(R, θ,φ) = 0 , (3.6)

where the kinetic energy operator is T = −!2

2µ∇
2
R. For spherical potentials

as in Fig. 3.1, there is complete cylindrical symmetry for the potentials
about the z-axis, and hence also for the wave function and the scattering
amplitude, so both of these are no longer functions of φ.

ψ(r)→ eikz + f(θ, φ)
eikr

r
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Cross section

Measure of the probability that a given reaction takes place

For instance: 1 particle/second out of 106 incident particles/second 
from a 1 mg/cm2 12C target corresponds to 2.10-26 cm2 or 20 mb

Differential cross section for elastic scattering:

For any reaction channel ß: A(a,b)B

Take internal degrees of freedom of particles into account

Total wave function:

σ =
number of particles emitted from a given reaction

(number of incident particles)(number of target nuclei/unit area)

dσ

dΩ
= |f(θ, φ)|2

ψ(r) = eikα·rαψaψA +
∑

β

fβ(θ, φ)
eikβrβ

rβ
ψbψB

dσβ

dΩ
=

vβ

vα
|fβ(θ, φ)|2
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Simplified form:

where:

Free particle solution: plane wave

Solution: plane wave + spherical waves generated by U

Schrödinger equation
(∇2 + k2)ψ(r) = U(r)ψ(r)

U(r) =
2mV (r)

!2

U(r) = 0→ (∇2 + k2)ψ0(r) = 0→ ψ0(r) = eik·r

k =
√

2mE

!2

ψ(k, r) = eik·r − 1
4π

∫
ik|r− r′|
|r− r′| U(r′)ψ(k, r′)dr′
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Asymptotic limit
The potential vanishes at large values of r:

simplifying for           :

where the vector k’ has magnitude k and direction of r

Asymptotic solution

Scattering amplitude

lim
r→∞

U(r) = 0
1

|r− r′| =
1
r

k|r− r′| = kr − k′ · r′r′ ! r

lim
r→∞

ψ(k, r) = eik·r − eikr

4πr

∫
e−ik′·r′

U(r′)ψ(k, r′)dr′

f(θ, φ) = − 1
4π

∫
e−ik′·r′

U(r′)ψ(k, r′)dr′
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Born approximation
Previous solution only formal: still contains unknown WF

Assume the potential U(r) is small: scattered wave has small 
amplitude and can be replaced by first term (plane wave)

Or:

where                    is the momentum transfer

Born approximation is a first order perturbation approximation

fBA(θ, φ) = − 1
4π

∫
e−ik′·r′

U(r′)eik·r′
dr′

fBA(θ, φ) = − 1
4π

∫
eiq·r′

U(r′)dr′

q = k− k′
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Distorted-wave Born 
approximation (DWBA)

Two potential formulation

Split the potential into elastic and non-elastic parts:

Suppose we know the solution of the elastic equation

as outgoing waves (+) and incoming (time reversed) waves (-)

The asymptotic solution can be expressed as

and the scattering amplitude

U = Uelas + Uother

(∇2 + k2)ψelas(r) = Uelas(r)ψelas(r)

ψ(+)
elas(k, r) ψ(−)

elas(k, r) = ψ(+)
elas(−k, r)∗

lim
r→∞

ψ(k, r) = ψ(+)
elas(k, r)− eikr

4πr

∫
ψ(−)

elas(k
′, r′)∗Uother(r′)ψ(k, r′)dr′

f(θ, φ) = felas(θ, φ)− 1
4π

∫
ψ(−)

elas(k
′, r′)∗Uother(r′)ψ(k, r′)dr′
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Use Born approximation: elastic channel dominates reaction

Use “distorted waves” of elastic scattering instead of plane waves

Generalization to any two-body reaction A(a,b)B

elastic amplitudes for both entrance and exit channels has to be 
known!

usually calculated from optical potential fitted on elastic scattering 
data

non-elastic reaction potential determined by reaction model

fDWBA(θ, φ) = felas(θ, φ)− 1
4π

∫
ψ(−)

elas(k
′, r′)∗Uother(r′)ψ

(+)
elas(k, r′)dr′

fDWBA(θ, φ) = − 1
4π

∫
ψ(−)

β (kβ , rβ)∗〈b, B|Uother|a,A〉ψ(+)
α (kα, rα)drαdrβ
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Motivation

Central scattering potential: angular momentum constant of motion

Wave function for a given angular momentum can factorize:

Simplify 3D Schrödinger equation into series of 1D radial equations

Partial waves decomposition

ψ!m(r) = u!(r)Y m
! (θ, φ)

− !2

2m

d2w!

dr2
+

[
V (r) +

!2

2m

!(! + 1)
r2

]
w! = Ew!

with: w!(r) = ru!(r) centrifugal barrier
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Partial waves expansion of plane wave (free particle solution)

Radial part are spherical Bessel function which asymptotically behave 
as sum of incoming and outgoing spherical waves:

Asymptotic form of radial WF for a given partial wave

Elastic channel:

Non-elastic channels:

Partial wave scattering amplitudes:

Also called S-matrix scattering matrix elements

eik·r =
∞∑

!=0

i!(2! + 1)j!(kr)P!(cos(θ))

lim
kr→∞

j!(kr) =
sin(kr − 1

2!π)
kr

=
i1−!

2kr

[
(−1)!e−ikr − eikr

]

lim
r→∞

u!,α(r) = y!

r

[
(−1)!e−ikαr − S!,αeikαr

]

lim
r→∞

u!,β(r) = −y!

r

√
vα
vβ

S!,βeikβr

S!,β
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Ensemble of scattering amplitudes for all reaction channels 
form a unitary scattering matrix:

The S-matrix can be expressed in terms of a phase shift, 
real for elastic scattering and complex for reactions:

The elastic and reaction cross sections:

Scattering matrix and phase shifts

∑

β

|S",β |2 = 1

S! = e2iδ! lim
r→∞

u!,β(r) = (kr)−1sin(kr − 1
2!π + δ!)

σel =
π

k2

∞∑

!=0

(2# + 1) |S! − 1|2 =
4π

k2

∞∑

!=0

(2# + 1)sin2δ!

σr =
π

k2

∞∑

!=0

(2# + 1)(1− |S!|2)
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Illustration of phase shift
Example of phase 
shift on S-wave by a 
square well potential 
(dash line)

Attractive potential 
pulls wave function 
in, whereas repulsive 
potential pushes it 
out
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Partial wave summation
How many partial waves contribute to the sum

Particles interact only for impact parameter

Relative angular momentum

The condition is then

!! = pb = !kb

b ! R1 + R2 = R

! ! kR
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Things omitted so far
Coulomb effects

Coulomb barrier and long 
range

Elastic waves replaced by 
Coulomb waves in the 
entrance and exit channels

Spin and isospin effects

Selection rules due to 
conser vation of total 
angular momentum
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Semi-classical approximations
Validity and characteristics

Particle wavelength short (localized) compared to characteristic 
length of interacting system (i.e. nuclear radius or potential variation)

Motion of particles treated classically, but interaction treated 
quantum mechanically

Implementations

WKB approximation: discrete sum over partial waves replaced by 
integration over angular momentum - Legendre polynomials replaced 
by their asymptotic form for large l.

Eikonal approximation: straight line trajectories further simplify 
integrals of WKB approximation
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WKB approximation
Requirements

Large number of partial waves contribute to the collision

Scattering amplitude varies slowly between l and l+hbar

Phase shift

r0 is the distance of closest approach

Cross section equal to classical cross section

dσ

dθ
=

b

|dΘ/db|θ
Θ(J) = 2

(
dδWKB

!

d"

)

!=(J− 1
2 )/!

δWKB
! = (" + 1

2 )
π

2
− kr0 +

∫ ∞

r0

√
2µ

!2
[E − V (r′)]− "(" + 1)

r′2
− kdr′
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Eikonal approximation
Energy of incident particle high: trajectory little deflected 
from a straight line

Distance of closest approach r0 same as impact parameter b

Can get total (not partial) wave function and scattering amplitude

Scattering amplitude

fE(θ, φ) = − µ
2π!2

∫
eiq·rV (r)e−ik

R z
−∞

V (b+z′k)
2E dz′dr

Target

Projectile

z

r b

v



D. Bazin, RIA summer school, July 17-21 2006, Oak Ridge, Tennessee 

Optical model
Basic assumptions

Scattering of structureless particles: potential scattering

Complex potential: imaginary part stands for all removals of flux 
from the elastic channel

General form of the potential

Real potential:

using a Wood-Saxon form factor:

U(r) = UR(r) + UI(r) + UD(r) + US(r) + UC(r)

UR(r) = −V fWS(r, R, a)

fWS(r, R, a) =
1

1 + e
(r−R)

a
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Absorption taken into account by two imaginary parts

Volume part:

Surface part:

Surface part dominates at low energy, but volume part becomes 
important at high energy (more penetration)

Spin-orbit potential

Necessary to describe scattering of polarized particles

Coulomb potential

UI(r) = −iWfWS(r, RI, aI)

UD(r) = 4iaIWD
d
dr

fWS(r, RI, aI)

US(r) = l · s
(

!
mπc2

)2

VS
1
r

d
dr

fWS(r, RS, aS)

UC(r) =
Z1Z2e2

2RC

(
3− r2

R2
C

)
(r ≤ RC),

Z1Z2e2

r
(r > RC)
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Total of 11 parameters to adjust from elastic scattering data:
V,R, a, W, WD, RI, aI, VS, RS, aS, RC
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Determination of optical potential parameters not necessarily 
unique
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Also use single and double folding potentials for real part

Use density distributions of projectile and target, and NN potential to 
calculate average interaction potential

Density distributions can come from other calculations such as HF

R
rp

rt
rtp

U(R) =
∫ ∫

ρp(rp)ρt(rt)νNN(rtp)drpdrt

U(R) =
∫

ρt(rt)νNN(rtp)drt



D. Bazin, RIA summer school, July 17-21 2006, Oak Ridge, Tennessee 

Motivation

Find parametrization of optical potential as a function of energy and 
target for a given projectile

For example: neutrons and protons from 1 keV to 200 MeV in the 
mass region 24 < A < 209 for spherical nuclei: A. J. Koning & J. P. 
Delaroche, Nucl. Phys. A 713 (2003) 231-310

Global optical potentials

A.J. Koning, J.P. Delaroche / Nuclear Physics A 713 (2003) 231–310 299

Fig. 48. Volume integrals for neutron-induced reactions for the real central potential as a function of mass, plotted

at three different energies. The symbols correspond to the values of the local OMPs while the solid curves

represent the global OMP (the curves in the deformed region, 148< A < 194 can be discarded).

Fig. 49. Volume integrals for neutron-induced reactions for the imaginary central potential as a function of mass,

plotted at three different energies. The symbols correspond to the values of the local OMPs while the solid curves

represent the global OMP (the curves in the deformed region, 148< A < 194 can be discarded).

A.J. Koning, J.P. Delaroche / Nuclear Physics A 713 (2003) 231–310 299

Fig. 48. Volume integrals for neutron-induced reactions for the real central potential as a function of mass, plotted

at three different energies. The symbols correspond to the values of the local OMPs while the solid curves

represent the global OMP (the curves in the deformed region, 148< A < 194 can be discarded).

Fig. 49. Volume integrals for neutron-induced reactions for the imaginary central potential as a function of mass,

plotted at three different energies. The symbols correspond to the values of the local OMPs while the solid curves

represent the global OMP (the curves in the deformed region, 148< A < 194 can be discarded).
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Transfer reactions
Calculations done using the DWBA approximation

Need to know optical potentials for both entrance and exit elastic 
waves

When elastic scattering data is not available, one can use global 
optical potentials

Shape of differential cross section depends on angular momentum of 
the transfered nucleon (identification)

The calculations use partial wave decomposition - convergence 
obtained by increasing number of waves

Available codes: DW81, DWBA91-96-98, DWUCK4-5…

For example @ https://intra.nscl.msu.edu/programs
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Example: 56Fe(d,p)57Fe
Position of cross section 
peak allows identification 
of l-value of transfered 
neutron

Deduce spectroscopic 
i n f o r m a t i o n f r o m 
compar i s o n between 
experimental and single-
particle DWBA cross 
sections
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Spin-parity assignments
Example: 36S(d,p)37S adds a neutron above N=20 in fp shell 
composed of single-particle 1f7/2, 2p3/2, 1f5/2 or 2p1/2 orbitals

Spectroscopic factor S measures the weight of single-
particle configuration in final state

(
dσ

dΩ

)

exp

= S′
ij

(
dσ

dΩ

)

DWBA
S′

ij =
2Jf + 1
2Ji + 1

Sij

∑

i

Sij = nj

E (keV) l S’ S1 S2 Jπ1 Jπ2

0 3 7.328 0.916 1.221 7/2- 5/2-

646 1 2.796 0.699 1.398 3/2- 1/2-
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Coupled-channels
Direct reactions description uses first-order perturbation 
theory (Born approximation) assuming one-step process

More complex reactions can proceed through multi-step 
processes depending on available paths and overlap between 
final and initial states
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Coupling to the continuum: CDCC
In particular for weakly bound nuclei, multi-step processes 
can couple to the continuum

CDCC: Continuum Discretized Coupled Channels divide 
continuum states in chunks to perform CC calculation

f !"k ,r #→$cos %!"k #Fl"kr #!sin %!"k #Gl"kr #& , "3#

where k belongs to bin ! and Fl and Gl are the regular and

irregular partial wave Coulomb functions. So the f ! are real

when using a real c!n two-body interaction. Energy conser-

vation connects the wave numbers K! of the c.m. of the

fragments in bin state ! and the corresponding bin state ex-

citation energies Ê!"'(̂!!Hp!(̂!) . For non-s-wave bins we
used g!(k)"1. For the s-wave bins we used g!(k)"k

which aids the interpolation of the three-body transition am-

plitude near the breakup threshold.

These bin states (̂! provide an orthonormal relative mo-

tion basis for the coupled channels solution of the three-body

c!n!t wave function. The bins and their coupling poten-

tials '(̂!!U(r! ,R! )!(̂*) are constructed, and the coupled equa-
tions are solved, using the coupled channels code FRESCO

$44&. Here U(r! ,R! ) is the sum of the interactions of the core

and neutron with the target, which are expanded to multipole

order q. The coupled equations solution generates "effective

two-body# transition amplitudes T̂
M!M
!

(K! !), already

summed over projectile-target partial waves, for populating

each bin state I!,M ! from initial state I ,M , as a function of

the angle of the c.m. of the emerging excited projectile in the

c.m. frame. These amplitudes are expressed in a coordinate

system with x axis in the plane of K! 0 and K! ! . For a general

x-coordinate axis the coupled channels amplitudes must sub-

sequently be multiplied by exp(i$M#M!&(K), with (K re-

ferred to the chosen x axis.

B. Three-body breakup observables

The relationship of the CDCC coupled channels bin state

inelastic amplitudes T̂
M!M
!

(K! !) to the physical breakup tran-

sition amplitudes T+:M(k! ,K! ) from initial state I ,M to a

three-body continuum final state is discussed in detail in Ref.

$43&. This is needed to make predictions for the detection
geometries considered here, since each detector configura-

tion and detected fragment energy involves a distinct final

state c.m. wave vector K! , breakup energy Ek , and relative
motion wave vector k! .
The three-body breakup T matrix can be written

T+:M"k! ,K! #"
"2,#3/2

k -
!.

"#i # l" l.s+!I!M !#

$exp$ i%!"k #&$Y l
." k̂ #g!"k #TM!M"! ,K! #.

"4#

Here %!(k) is the neutron-core relative motion phase shift in

excitation state I!, and the TM!M(! ,K
! ) are interpolated from

the coupled channels T̂
M!M
!

(K! !) on the chosen K! and /K!

grid. Specifically,

TM!M"! ,K! #

"exp" i$M#M !&(K#$ T̂M!M
! "K! #/!N!& , "5#

where the value of the bracketed term on the right hand side

is interpolated from the coupled channels solution. The num-

ber of bin states used to describe each I! excitation must
allow an accurate interpolation of these amplitudes. The sum

in Eq. "4# is taken over all bin states ! which contain k.

The three-body amplitudes, Eq. "4#, are used to compute
the triple differential cross sections for breakup in the labo-

ratory frame. If the energy or momentum of the core particle

is measured then the relevant cross section is

d3+

dEcd0cd0n

"
2,1pt

22K0

1

"2I!1 #

$-
+M

!T+:M"k! ,K! #!23"Ec ,0c ,0n#, "6#

where 3(Ec ,0c ,0n) is the three-body phase space factor

$45&. The data under discussion here are the parallel momen-
tum distributions for the heavy core fragments and the cross

sections must be integrated numerically over all directions of

the unobserved neutron. The core d+/dp " differential cross

sections are computed by writing, after d0n integration, in

the laboratory frame

d+

dp! c
"

1

mcpc

d2+

dEcd0c

"7#

and then integrating over the required angular acceptance

and/or perpendicular momentum components of the heavy

residue.

FIG. 4. Diagrammatic representation of the CDCC model space

calculation for 15C. The left side shows the physical bound states

and continuum and the right hand side the included continuum bins

"10# in each n! 14C partial wave. The dashed arrows are represen-

tative of the one-way couplings included in the DWBA. The solid

arrows show representative couplings for the full CDCC calcula-

tions which connect all bins, including diagonal bin couplings, with

two-way couplings to all orders. Relative h waves were found to

make negligible contributions.

SINGLE-NEUTRON REMOVAL REACTIONS FROM 15C . . . PHYSICAL REVIEW C 66, 024607 "2002#

024607-7
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Cluster models
Motivation

Take explicitly into account the cluster structure of particular nuclei

Typical example of application: halo nuclei

Few-body eikonal or Glauber theories

Applicable at high energy

Straight line trajectories

Removal of valence nucleons

Stripping component in knockout 
reactions (lecture 3)
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Complex reactions
Low to intermediate energy: formation of compound nucleus 
by complete or incomplete fusion, followed by evaporation - 
deep-inelastic collisions

High energy: depending on impact parameter, fragmentation 
or multi-fragmentation of both nuclei with formation of hot 
(participant) and cold (spectator) zones

Phenomenological and statistical models better suited to deal 
with complexity and strong couplings which occur in this 
type of reactions

Liquid-drop model

BUU, AMD, …
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HIPSE: a minimal approach
Heavy Ion Phase Space Exploration

Created by D. Lacroix, D. Durand and A. Van Lauwe (PRC 69, 
054604 (2004)

Basic idea: macroscopic/microscopic simulation of heavy ion 
collisions at energies around the Fermi energy - event 
generator

Simulation based on very simple rules (energy balance, 
barrier constraints, etc…) and random exploration of the 
phase space available during the collision

Vast amount of data well reproduced by this model: 
complexity arise from simple rules and initial conditions 
(chaotic behavior)
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Scenario
Entrance channel :
classical dynamics 

of macroscopic clusters

Fast Nucleosynthesis in 
a dense matter  

from microscopic 
nucleons properties

Out from the dense matter : 
Important Final State Interaction

The after burn phase :
desexcitation of the initial 

phase-space
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Entrance channel

overlap
zone

Projectile

Target

Participant-Spectator
picture

Importance of the 
geometry 

Nucleon
Sampling 

Initial Fermi-motion
Frozen density 
approximation

Quasi-Participant 
Quasi-spectator

QP

QT

Exchange of 
particles
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Cluster synthesis in overlap region

Coalescence conditions 1-existence 2-proximity in position and momentum

Phase space exploration: random exploration of most probable 
cluster formation
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Final state interaction

V A
1A

2(r
)

r (fm)
Fusion 

Separation

Initial partition
After the reaction 
time (t=50 fm/c) 

test of fusion
Before desexcitation

Vpot > 0

Classical dynamics

From nucleon 
 motion we obtain :

fragments 

{with

Two-by-two Fusion test  Energy balance and sharing 
 before desexcitation

This defines the phase-space
before decay in-flight
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Example: Xe+Sn @ 50 MeV/u
Maximum 

overlap
Final state 
interaction

During the 
in-flight 

desexcitation
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Three parameters
“Hardness” of potential as the target 
and projectile nuclei approach and 
overlap

Rate of exchange of particles 
between target and projectile

Percentage of nucleon-nucleon 
collisions in the overlap region

model where only three important parameters remain: the

percentage of nucleons transferred, xtr, between the projectile

and target, the parameter !a which describes the hardness of

the potential, and the percentage of nucleon-nucleon colli-

sions, xcoll.

In the following, the values of the parameters have been

adjusted by comparing the results of the calculation with

experimental data. The data used for the study have been

collected by INDRA Collaboration near the GANIL facility

[33] (and references therein) for Xe+Sn collisions at

25 MeV/nucleon and 50 MeV/nucleon and Ni+Ni at 32,

52, and 82 MeV/nucleon [34]. Calculations were also per-
formed for Xe+Sn at 80 MeV/nucleon and compared with

data taken by INDRA-ALADIN Collaboration at the SIS fa-

cility [35]. Results will be published elsewhere [36]. We
present in Fig. 3 the evolution of the parameters as a function

of the beam energy. As expected, !a and xcoll increase with

EB while the number of transferred nucleons decreases. It is

worth noting that a similar set of parameters was used for

Xe+Sn and Ni+Ni and a clear systematic evolution of the

parameters observed, which approximately scales with the

size of the colliding nuclei for symmetric systems. In the

following, we will only show comparisons between the re-

sults of the model and data for Xe+Sn at 25 MeV/nucleon

and 50 MeV/nucleon and Ni+Ni at 82 MeV/nucleon. For

other energies, similar agreement has been found.

III. COMPARISON WITH EXPERIMENTAL DATA

A. “Raw” outputs of the model

Before going on with a detailed comparison of the model

outputs with experimental data, it is worth having an over-

view of the characteristics of the reaction as simulated by

HIPSE. To this end, we show in Fig. 4, the bidimensional

atomic number Z vs the reduced parallel velocity v// /vproj for

the reaction 129Xe+ 120Sn at 50 MeV/nucleon displayed as a

function of the reduced impact parameter bred defined as

b /bmax. Note that only nuclear species with Z"3 are shown
in the figure. The first panel corresponds to all events and, as

FIG. 2. Example of nuclear

dynamics obtained for the reaction
129Xe+120Sn at E

=50 MeV/nucleon. From top to

bottom, the initial impact param-

eters b=9 fm, b=6 fm, and b

=2 fm are presented. In each case,

from left to right figures corre-

spond to the initial cluster con-

figuration !t=0 fm/c", the con-

figuration before and after the

reaggregation !t=50 fm/c", and
during the deexcitation !t
=300 fm/c".

FIG. 3. Values of the different parameters of the model as a

function of the beam energy for the reaction 129Xe+ 120Sn (filled
circles) and 58Ni+ 58Ni (squares). From top to bottom, we present,

respectively, the evolution of the parameter associated with the po-

tential hardness !a, the rate of exchange of particles between the

target and projectile, xtr (in percent), and the percentage of nucleon-
nucleon collisions in the overlap region, xcoll (in percent).
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Example of one event
Central collision of Xe + Sn at 50 MeV/u
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Chemical and kinetic properties
INDRA DATA : Xe + Sn, 25,50,80 MeV/A
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From compound to fragments

48Ca

40Ca

M
as

s
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QP and QT

Fragment mass before desexcitation
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Application to projectile 
fragmentation

M. Mocko (PhD Thesis)
Production of Radioactive 
elements (HiRA Group)

AMD

HIPSE

48Ca+9Be
40Ca+9Be
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Some more events…
Peripheral collision of Xe+Sn at 50 MeV/u
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Availability

Two models with same ingredients have been developed 
and compared with success to experiments 

HIPSE for heavy-Ion reactions
nIPSE for nucleon-Ion reactions

A large set of data is now available… and could be compared
with HIPSE.

http://caeinfo.in2p3.fr/theorie/theory_lacroix.html

Thanks to
 V. Blideanu, D. Durand, G. Lehaut, O. Lopez  
 A. Van Lauwe and E. Vient 

Unix, Linux, Mac OS X
 Ca+Ca  1         Million events per day
 Xe+Sn   0.1     Million events per day
 Au+Au   0.01   Million events per day
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More examples
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More examples (cont.)


