Implementation of Density Functional Theory basec
Electronic Structure Codes on Advanced Computin

Architectures
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Cray-X1E

o 1024 Multi-streaming vector processor (MSP)
— Each MSP has 2 MB of cache and a peak computation rate of 12.8 GF

— 4 single-streaming processors (SSPs) form a node with 16 Gbytes of
shared memory

— Memory is physically distributed on individual modules

— all memory is directly addressable to and accessible by any MSP in the
system through the use of load and store instructions

Single X1 AC Cabinet Multi-Streaming Vector Computing
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Porphyrin Functionalized
Nanotube

1532 atoms

STO-3G basis set = 6380 basis

functions SN Ly
Do the covalently attached PR e ERRT TR
porph_grlns_. undergo facile absorption &8 M S
of visible light and transfer SR

electrons to the nanotube

What type of efficiencies does one
obtain

Time for LDA energy + gradient
ﬁsing 300 processors = less than 1
our




LSDA &Multiple Scattering Theory (MST )

=  Multiple Scattering Theory (MST)
J. Korringa, Physica 13, 392, (1947)
W. Kohn, N. Rostoker, PR, 94, 1111,(1954)
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Algorithm Design for future
generation architectures

- More accurate

- Spectral or pseudo-spectral accuracy

» Wider range of applicability

« Sparse representation

- Memory requirements grow linearly

e Each processor can treat thousands of atoms
- Make use of large number of processors

* Message-Passing

- Each atom/node local message-passing is independent
of the size of the system

- Time consuming step of model
- Sparse linear solver
*Direct or preconditioned iterative approach



Multiple Scattering Theory

Multiple scattering theory
- Green function

- Scattering path matrix

""() =1,(dn + 24, (9G(R, ~R,)1™(®)

nzm
" (e =(M™(€)”
MIT (&) =t0d G — G (Ry —Ry)

Generalization of t-matrix. Converts M (g) =
incoming wave at site n into outgoing wave
at site m in the presence of all the other sites
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Complex Energy Plane

Im € €; is the highest occupied electronic state in energy

Scattering is local since there are no states

O near the bottom of the energy contour

Scattering is local since a large Im  gis equivalent
to rising temperature which smears out the states

o

£ > Real € O Near g scattering is non-local (metal)

Im €

Semi-conductors and insulators could work
well since they have no states at &

Real €

&

The scattering properties at complex energy can be used to
develop highly efficient real-space and k-space met  hods



Multiple Scattering Theory

L,L",0

/ \

Depends on constituent V(r) Depends on € and
Independent of lattice Underlying lattice structure

W(E) =t ,(8) - GL(R,E)

Representation is ideal for disorder systems since t-matrix
IS site diagonal !!

Coherent Potential Approximation (CPA)

Non-local CPA (based Dynamical Cluster Approximation to
Dynamical mean-field theory



t-matrix

e Solve for t-matrix inside
Voroni polyhedron

— Using Calergo method

R,(r) =, (kr) — & | SV(S)R, ()], (ks)j, (kr) - ], (ks)n, (kr)]ds

Ré(r) = Cz(r)je(Kr) _Sene(Kr)

M — —KrZV(r)nf(Kr)[Cg(f)j/g(Kr) —sﬂnf(Kr)]
dr
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()], (xn)[c, (r)j, (xr) =s,n, (k)]

Equations solved for both regular and irregular solutions
Since each atom and / is independent can solve in
shared memory. Similar for the structure constants.



Parallel Implementation

* Green'’s function

G™(F, 759 = Y20 (7, ) (&2 (Tys€) ~ 20 (T I7 (F: 4.
LL'

INPUT v (00 Pl ()

i
COMPUTE F & GM

SEND i

@‘__) RECEIVE # ' ¢ 7
tT COMPUTE  T=[L- 1G]\t

. * Scattering path matrix: real space

=M
M= [I‘l(a)-Q(an,E)]

t : scattering from single site
G: structure constant matrix

* Once M is fixed increasing N does not
affect the local calculation of M-1



Tight-Binding MST Representation

Tight Binding Multiple Scattering Theory G"™S () [ e—(vS—s)“ IR, -R,|
Embed a constant repulsive potential _U2R _R ‘

e n m
Shifts the energy zero allowing for Gnm(ﬁ) []— =
calculations at negative energy ‘Rn — Rm‘
Rapidly decaying interactions G =G, +G tG, +G tG tG, =G, (I -tG,)™
Free electron singularities are G =G, -t
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Sparse representation



Screened Structure Constants

e Linear solve using m
atom cluster that Is less

than the n atom system G*(&) =[I -t°G"™* ()] ™
e Easy to perform Fourier R
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. S , C
on the left unscreened on the right Distance/Lattice—Constant

— Screened structure constants
rapidly go to zero, whereas the
free space structure constants
have hardly changed



Screened MST Methods

Formulation produces a sparse matrix representation

— 2-D case has tridiagonal structure with a few dista  nt elements
due to periodicity

— 3-D case has scattered elements
e Mainly due to mapping 3-D structure to a matrix (2- D)
* A few elements due to periodic boundary conditions
Require block diagonals of the inverse of  1(€) matrix

— Block diagonals represent the site  1(€) matrix and are needed to
calculate the Green’s function for each atomic site

Sparse direct and preconditioned iterative methods are used to
calculate T'(g)

— SuperLU
— Transpose free Quasi-Minimal Residual Method (TFQMR )



Screened KKR Accuracy

Scr-KKR
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Timing and Scaling of Scr-K
KKR-CPA
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Conclusion

Initial benchmarking of the Screened KKR method
— SuperLU N 18for finding the inverse of the upper left block of T

— TFQMR with block Jacobi preconditioner N 1.06for finding the inverse of
the upper left block of Tt

Extremely high sparsity (97%-99% zeros increases wi  th increasing
system size)

Large number of atoms on a single processor

Real-space/Scr-KKR hybrid may provide the most effi ~ cient parallel
approach for new generation architectres

Single code contains
— LSMS, KKR-CPA, Scr-LSMS and Scr-KKR-CPA



Local Poisson Equation
Discontinuous Galerkin approach

-Au=711nQ

%: tenso basish ~-Bimensio
[lo=f

V = basis
u, =Is the representation of u on an element,

same folio,,

(i;JK%h Tdx=-] yOOdx+] 6, Merds, 00 0 (K)

| o,mvdx=-] fvdx+ ]| 6 mhvds,Ov OPK)



