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TOPS Optimization Applications in SciDAC

� Quantum Chemistry
� Energy minimization
� Transition states

� Nuclear Physics
� Nonlinear eigenvalues
� Parameter estimation
� Least action pathways

� Accelerator Design
� Shape optimization
� Nonlinear eigenvalues

� Groundwater Flow
� Parameter estimation

Towards Optimal Terascale Simulations



Toolkit for Advanced Optimization (TAO)

An optimization toolkit for solving large-scale optimization
problems on advanced (massively parallel) architectures.

� Portability, performance, scalability
� An interface independent of architecture
� Leverage existing parallel computing infrastructure (PETSc)

TAO (www.mcs.anl.gov/tao)

NWChem, MPQC

� Source code and documentation
� Installation instructions, example problems, . . .

www.mcs.anl.gov/tao


TAO Impact

Selected applications

� Semiconductor modelling
� Magnetic nanostructures
� Subsurface remediation
� Variational surfaces P. Bauman P. Joshi

Toolkits

� TADM - Parameter estimation
� BUSTER - Protein structures
� ELEFANT - Statistical machine learning



Noisy Optimization Problems: α-pinene

Determine the reaction coefficients in the thermal isomerization of
α-pinene from measurements z1, . . . z8 by minimizing

8∑
j=1

‖y(τj ; θ)− zj‖2

y′1 = −(θ1 + θ2)y1
y′2 = θ1y1

y′3 = θ2y1 − (θ3 + θ4)y3 + θ5y5

y′4 = θ3y3

y′5 = θ4y3 − θ5y5

This problem can be formulated as a (noisy) optimization problem

min {f(θ) : θ ≥ 0}



Noisy Bound-Constrained Optimization

min {f(x) : xL ≤ x ≤ xU}

What are the best optimization techniques for nonlinear, noisy
(computationally-intensive) problems?

Approaches

� Stochastic methods (simulated annealing, . . . )

� Geometry-based methods (pattern search, . . . )

� Model-based methods (quadratic models, . . . )

� Gradient methods (conjugate gradient, . . . )



Derivative-Free Optimization

Geometry-based Methods

� Nelder-Mead
� Pattern search

Pattern Pk

Pk =⇒ Pk+1

Model-based Methods

� Quadratic models
� Radial-basis models

Model qk

qk =⇒ qk+1

Numerical Recipes only mentions the Nelder-Mead method



Performance of Derivative-Free Methods

Smooth problems Noisy problems
(
εF = 10−3

)
� Data profiles with f(x) ≤ f(x∗) + τ(f(x0)− f(x∗))
� Units are the number of (simplex) gradients for convergence
� Benchmark problems with n variables, 2 ≤ n ≤ 16

Reference: www.mcs.anl.gov/~more/dfo

www.mcs.anl.gov/~more/dfo


Gradient-Based Optimization Methods

Assume that the gradient ∇f is available. What are the best
techniques for the optimization problem

min {f(x) : xL ≤ x ≤ xU}

Nonlinear conjugate gradient methods

� Fletcher-Reeves (FR)
� Polak-Rivière (PR)
� Limited-memory CG methods

Numerical Recipes only mentions FR and PR.



TAO Benchmark: Ginzburg-Landau Model

Minimize the Gibbs free energy for a homogeneous superconductor∫
D

{
−|v(x)|2 + 1

2 |v(x)|
4 + ‖[∇− iA(x)] v(x)‖2 + κ2 ‖(∇×A)(x)‖2

}
dx

v : R2 → C (order parameter)
A : R2 → R2 (vector potential)

� Unconstrained problem
� Non-convex function
� Unique minimizer, but there is a saddle point
� Hessian is singular.



Performance of Nonlinear Conjugate Gradient Methods

� Data profiles with f(x) ≤ f(x∗) + τ(f(x0)− f(x∗))
� Units are the number of gradients for convergence
� Benchmark problems with n variables, 2, 500 ≤ n ≤ 40, 000



Scalability: Computing Time and (f,∇f) Evaluations

� Mesh sequencing
� Convergence test on each level based on f
� Finest mesh with 15352 ≈ 2.3 106 grid points



Global Optimization

Determine the optimal configuration x1, . . . , xm in R3 for

V (x) =
∑
i6=j

1
‖xi − xj‖

+
m∑

i=1

‖xi‖2.

m = 200 m = 120, 000

Question: Are these optimal configurations?



Concluding Remarks

� Data profiles estimate the percentage of problems that can be
solved on a fixed computational budget.

� Model-based derivative free solvers currently offer the best
chance of solving noisy, nonlinear optimization problems.

� Seek a professional optimizer for advice on optimization.


