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@3 Established Microscopic Methods (CHF-ATDHF)

@ Advantages
- Fully microscopic description of nuclear PES
- Use same microscopic interaction used in g.s. calculation
- Gives global information on collective potential
- Quantization via ATDHF

@ Shortcomings
- Artificial introduction of constraining operators
- Collective motion not necessarily confined in constrained phase space
- Static adiabatic approximation
- Most energetically favorable state requires sudden rearrangement
- No reason why dynamical system should move along the valley of PES

- CHF calculations seldom produce the correct saddle-point
Moller, Sierk, Iwamoto, PRL 92, 072501 (2004)
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@3 Desired Improvements

@ Explore collective dynamics in terms of mean-field dynamics
- self-organizing system selects its evolutionary path by itself
following the microscopic dynamics.

@ Develop dynamical methods for selecting constraining operators
- which are not known from the outset nor from the static theory
- should it be coordinate or constraint?

@ Go beyond the static adiabatic approximation
- Explore nonlinear dynamics between single-particle degrees
of freedom and collective motion by going beyond adiabatic
approximation

@ Diabatic states
- Go beyond single determinant (shape coexistence)
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@3 Density Constrained TDHF

@ Project unhindered TDHF evolution onto the dynamical PES
- system selects its evolutionary path by itself
- constrains all collective degrees of freedom

“ TDHF trajectory

E*

@ Extract internal excitation energy
- hold the instantaneous TDHF density frozen

- minimize the energy

1. Cusson et al. Z. Phys. A320, 475 (1985)
2. Umar et al. Phys. Rev. C32, 172 (1985)
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kb Numerical Implementation
ua—p

@ Generalize the ordinary method of constraints
- for a single constraint —» H—-H+AQ
- for a set of constraints ——» H—H+) A0,
- for density constraint ——» H— H+ | d%i\(r)ﬁ(r)
. . p(r)=2 8(F=F)
@ Works as accurately as a single constraint i
- numerical method for steering the solution to TDHF density
IS given in:

1. Cusson et al. Z. Phys. A320, 475 (1985)
2. Umar et al. Phys. Rev. C32, 172 (1985)
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- Excitation Ener
[@i _oraonEney

“ TDHF trajectory

Et_TDHF Rt DCt

ETDHF<t):f d'r H(F,t)
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—p EXcitation energy

—» lotal energy is constant
(includes kinetic energy)

— Translational kinetic energy

—» HF energy with constraint on
pmonr (T, t)0btained from TDHF
(no kinetic energy)




@3 lon-lon Potential

@ Total energy in terms of the excitation energy is:

Eoppp=Tp+V+E  ——»  V=E—T.—E =Ep
@ E__ contains the binding energies of the two nuclei

V(R)—>E,.(R)-E, —E, ——» Subtract binding energies
@ Asymptotically correct because (no normalization needed):

7. 7. e 7.7, e
J=E,+E, + ;{ 2 » V(R )= }e 2

max max

Epc(R

max

@ Contains all of the dynamics present in TDHF; neck formation,
particle exchange, deformation to all orders ...

Umar, Oberacker, Phys. Rev. C 74, Rapid Communication, 021601 (2006)
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@3 A New Generation TDHF Code

@ Unrestricted 3-D Cartesian geometry
- No fixed reaction plane
- No rotating frame approximation (2D codes)
- No reflection symmetry (+z/-z)

@ Basis-Spline discretization for high accuracy

@ Coded in Fortran-95 and OMP

@ Use of modern Skyrme forces with all the terms (time even/odd)

@ No time-reversal symmetry assumed
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@ New Physics with TDHF

@ Much improved fusion cross sections for light systems
- New terms should be incorporated into Skyrme fits!
Umar, Oberacker, Phys. Rev. C 73, 054607 (2006)

@ [t is possible to calculate cross sections for deformed nuclei
- Orientation probability determined from Coulomb excitation

Umar, Oberacker, Phys. Rev. C 74, 124606 (2006)

@ New method for calculating ion-ion potentials from TDHF
- Use the novel method of density constraint during TDHF evolution

Umar, Oberacker, Phys. Rev. C 74, Rapid Comm., 021601 (2006)

@ Dynamical deformation effects in subbarrier fusion of **Ni+'*Sn
- Study barrier distribution depending on orientation of **Ni
Umar, Oberacker, Phys. Rev. C 74, Rapid Comm., 061601 (2006)
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@3 Comparison to Empirical Fusion Potentials

@ DC-TDHF potential contains no parameters and normalization
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@ All comparisons show incredible agreement!
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@3 Energy and Orientation Dependence
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@3 Approach to Fusion

@ |n fusion system climbs up a potential ladder
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@ R(t) eventually becomes the compound radius
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@3 Application to Heavier Systems

20 -15 -l0 -5 0 5 10 15 2.-20 =15 -10 -5 0 5 10 15 20 —20 -15 -10 -5 0 5 10 15 20

@ %4Ni+1328n, E_,= 176 MeV, SLy5, b = 3 fm
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Q)B Application to Heavier Systems
S\
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Liang et al., PRL 91, 152701-1 (2003)

Umar, Oberacker, Phys. Rev. C 74, Rapid Comm., 061601 (2006)
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Q)B Dynamical Effective Mass

E.,=~M(R)R+V(R)

g

TDHF DC-TDHF

@ Typical CHF type peak
- Because we are over the barrier!




@3 Dynamical Reduced Mass

| | @ Naive definition not valid for general Skyrme force
| 2 Ry B A (R)
® E\‘ ° A4,(R)+ 4,(R)
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@3 Future Directions | — EOS for Finite Nuclei

@ Compress/decompress nucleus by constraining scaled density
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tg)j Future Directions |l — Induced Fission

@ Previous TDHF calculations yield fission under special conditions
- when initialized slightly beyond the saddle point
- starting from two-center type initial state
- excited slabs

@ Suggests that we need to go beyond single-Slater determinant
- Pairing necessary for axial/reflection symmetric calculations
to couple states with different angular momentum
- In unrestricted 3D the coupling is there

- Shape coexistence? s 0 Pu
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