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Introduction
Deeper understanding of nuclear structure,
ex., Foundations of independent particle motion,
starting from the free NN interaction
Description of short-range repulsive core and tensor force

Changes in the effective nuclear interaction
Sizable effects of  three-nucleon interactions on the two-body interaction
in not only light but also medium, medium-heavy nuclei

effective vs genuine three-body interactions

Evolution of the Nuclear Interaction
old generation NN int. Chiral Nuclear Interaction,…

Excitation and decay properties of weakly bound systems
The same footing description of correlations and continuum states



In a fully microscopic approach, 
the single-particle basis should be constructed

from the free nucleon-nucleon interaction
or more complicated three- and/or many-body interactions.

G. Hagen, M. Hjorth-Jensen, N. Michel, PRC.73, 064307(2006).

Different realization of the short range nuclear interaction
the Skyrme and Gogny interactions

Effective theories employ a set of parameters that are adjusted to 
selected exp. observables. ⇒a multitudes of different force parametrizations.

(to do that)

….the correct single particle states, that are so crucial for high accuracy
calculations,

are in general coupled to collective motion and therefore difficult to determine.
A. Bhagwat, R. Wyss, W. Satula, J. Meng, Y. K. Gambhir,

Deficiency of Spin Orbit Interaction in Relativistic Mean Filed Theory
nucl-th/0605009
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Historical background of UMOA 
development of microscopic effective interaction theory

J. H. Van Vleck, Phys. Rev.33(1929), 467.

S. Okubo, Prog. Theor.Phys. 12(1954), 603: decoupling eq. ,
elimination of meson degrees of freedom.

F. Villars, Enrico Fermi  course 23(1964),1.: extension of HF in unitary transformation

J. da Providencia and C. M. Shakin, Ann. Phys.30(1964), 95.
cluster expansion, medium effect

C. M. Shakin, Y. R. Waghmare, M. H. Hull, Jr., Phys. Rev. 161(1967), 1006. 
cal. of 16O, 40Ca

K. Suzuki, S. Y. Lee, Prog. Theor. Phys. 64(1980), 2091: Lee-Suzuki method, 
similarity transformation

K. Suzuki, Prog. Theor. Phys. 68(1982), 246.hermitization of effective interaction



Extension of UMOA

• UMOA in isospin basis(1986-1994)

• UMOA in particle basis(2004- )

UMOA with Chiral nuclear interaction(?)
for complex effective interaction(?)



Formulation of UMOA with 2NF
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;
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Hamiltonian of a many nucleon system 
interacting via  a nucleon-nucleon interaction

Anti-hermitian two-body correlation operator
( 2 ) ( 2 )† ( 2 ), [ ]ij

i j
S S S S

<

= = −∑

: realistic NN int. AV8, AV18, CD-Bonn, Nijmegen, NLO,

Coulomb int .
ijv ⇐

2
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Second quantization form 

ui: auxiliary, but self-consistently determined potential
Medium effect
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⇒ Ψ = Ψ

⇒ Φ = Φ

Description of correlations in similarity transformation

Reference state (uncorrelated state)

correlated ground state

Schroedinger eq. for a many-body system

( 2)

0 0eSΨ = Φ

0 0 0H EΨ = Ψ

0Ψ

0Φ

Exp ansatz



Unitary transformation of Hamiltonian 
and its cluster expansion
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Non-perturbative, Correlation expansion 

Second quantization form



Effective two-body interaction

( 2) ( 2)
123 123-
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Effective three-body interaction induced by 
the two-body correlations

12 12-
112 2 21e e ( )S SH h h v= + +

12 1 2 12H h h v≡ + +or

Well behaved interaction

Two-body subsystem Hamiltonian



Determination of two-body correlation operator
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Projection operators in two-body state space

General solution for the wave operator

Eigen value equation for the two-body sub-system
in an entire many-body system
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ProjectionProjection-- and Wave operatorsand Wave operators
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Decoupling equation in two-body system

12 12-(2) (2)
12

(2) (2)
121 2

(2) (2)
1 2

(2) (2)
12

e e 0

( ) 0
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Decoupling equation for transformed Hamiltonian 
of  two-body subsystem 

†(2) (2) (2)arctanh( - )S ω ω=

Relation between wave operator and correlation operator

I. Shavitt, L.T. Redman, J. Chem. Phys. 73(1980), 5711
P. Westhouse, J. Quantum Chem.20(1981), 1243.
K. Suzuki, Prog.Theor.Phys.68(1982),246



Decoupling property of effective two-body interaction



Self-consistency between 
single-particle  potential and effective interaction

J. da Providencia and C. M. Shakin, Ann. Phys.30(1964), 95.



Physical meaning of S（２）

( 2) 2(2) (2)1
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2 (2)1
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uncorrelated(unperturbed) relative w.f. of 2N system

              correlated relative w.f. of 2N system
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integral

defect function



Removal of Center-of-mass motion effect
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Intrinsic Hamiltonian

The A-dependent Hamiltonian which is composed of the intrinsic motion 
and  CM motion confined in H.O. pot.

where



Particle-hole transformation of transformed Hamiltonian
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Effective single-particle matrix elements

(3 ) (4 ) ,
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3-body cluster terms
4-body cluster terms

2-body corr. amplitude
2-body eff.int.



Contributions of 3-,4-body cluster terms 
to s.p. Hamiltonian



Two-body interaction matrix element

(2 )1
12 1232!

F

NF
V v v

λ ρ

αβ γδ αβ γδ αβλ γδλ
≤

≡ + ∑

Effective two-body int. Effective three-body int.
induced by the two-body 
correlations
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Two-step determination of the effective interactions

Approximate decoupling ;
1) average over          

in two-body relative-CM system
2)  diagonal in CM q.n.
3) u1 = 0 for Q (1) space

CM,aj L

Exact decoupling in shell-model basis 
in two-body space

( I ) ( I )( -I)
e eS SHH ≡

( II ) ( II )(II (I-) )
e eS SHH ≡

(Two-body pn state space)

2 2a a b bn nρ = + + +



Diagrammatic expression of the ground-state energy
in terms of G-matrix 



Diagrammatic expression of the single hole energies 
in terms of G-matrix



1 ( )
!

n

n n

d GG
n d

ε
ε

≡

Comparison of G-matrix, CCM and  UMOA (1)



Comparison of G-matrix, CCM and  UMOA (2)



Calculation of the ground-state energy



Calculation of the ‘‘single-particle energies’

Particle 
energies

Hole  
energies



Results of calculations in isospin basis 
with old-generation NN interactions 
(Reid, Paris, SSC, Bonn-A, -B, -C)

16O; binding energy 
charge radius, 
absolute single-particle energies
spin-orbit splittings

40Ca; binding energy 
charge radius, 
absolute single-particle energies
spin-orbit splittings

(4He); binding energy  -- unpublished --

1986-1994
NN int. for np (T=0)

pp,np,nn (T=1)
(1/3) Coulomb int. for pp,np,nn











Calculation of 4He in UMOA (isospin basis) 
-unpublished (1986)-

Ground-state energy

-28.25 [ MeV ] ( with Reid Soft-Core NN potential)

-27.13 [ MeV ] ( with Paris NN potential)

-28.12 [ MeV ] ( with Super Soft-Core NN potential)

-28.30 [ MeV ] ( Experiment)

With coulomb interaction, 
without spurious CM motion effect

1 2 3 max20, 10, 0, 4, Max1=20, 20 MeVρ ρ ρ ω= = = = =



Effects of the three-body cluster terms

In theory, unitarily transformation does not terminate in its expansion series.

Convergence of cluster expansion

(2 ) (3 )
0 0 0

(3 )
0

(2 )
0

;

100 3 (%)

BC BC

BC

BC

E E E

E
E

= + Δ +

Δ
→ × ≈

In the actual calculations

Reducing of the dependence of the calculated results on s.p. H.O. basis

Sizable contribution to the ground-state energy

A significant effects  in reproducing the correct nuclear size

K.Suzuki, R. Okamoto, Prog. Theor. Phys.76(1986),127-142.

almost converges



16O,15O, 15N, 17O, 17F
22,23,24,25O
(40Ca) ;almost converging results
(4He, 3He,3H);preliminary

Results of calculation in particle basis 
with high precision NN interactions 

(CD-Bonn, Nijmegen-I, Nijmegen93, N3LO) 

NN int.          for  np,pp,nn, 
Coulomb int. for pp  



Calculation of 16O in particle basis

S. Fujii, R. Okamoto, K. Suzuki, Phys.Rev.C69(2004),034328

-127.62 -115.61 -110.00 -104.25 -99.69
(9% missing!)



Results of 15, 17 O

Exp

Exp

S. Fujii, R. Okamoto, K. Suzuki, 
J. Phys. Conference Series , 20 (2005), 83-88



Calculations of neutron-rich O isotopes

S. Fujii, R. Okamoto, K. Suzuki,
Proceedings of the International Symposium on A New Era 
of Nuclear Structure Physics (NENS03),Niigata, November 
2003 (World Scientific, Singapore, 2004, pp.~70-74)



Calculation of  17F

Exp

S. Fujii, R. Okamoto, K. Suzuki, PRC69(2004),034328



Calculation of 15C

S. Fujii, R. Okamoto, K. Suzuki, 
J. Phys. Conference Series , 20 (2005), 83-88



Results of 40Ca

Almost converges

Very weak dependence on the H.O. size 
adopted s.p.basis

S. Fujii, R. Okamoto, K. Suzuki, 
J. Phys. Conference Series , 20 (2005), 83-88



Results of 4He (in particle basis)

( )
0
( ) (1p-1h)
0 0

( ) (1p-1h) (3 )
0 0 0

23.23 MeV

26.15 MeV

27.72 MeV

unperturbed

unperturbed

unperturbed BC

E
E E
E E E

= −

+ Δ = −

+ Δ + Δ = −

UMOA calculation with CD-Bon NN potential

Faddeev-Yakubovski calculation with CD-Bon NN potential

(3 )
0

( )
0

100 0.032 [%]
BC

unperturbed

E
E
Δ

× =

16
(3 )

160
( )
0 16

1.3[%] in O for Paris NN pot.
100 1.2 [%] in O for Reid NN pot.

1.4 [%] in O for SSC NN pot.

BC

unperturbed

E
E

⎧
Δ ⎪× = ⎨

⎪
⎩

S. Fujii, et al., PRC70, 024003 (2004)
0 27.74 MeV (s-wave approximation)E = −

A bit worse cluster expansion in contrast to 16O case



Some challenges

１）incorporation of 3NF ( Chiral nuclear interaction)

２）microscopic effective interactions for weakly bound nuclei;
a generalization of effective interactions 

from real to complex effective interactions
G. Hagen, M. Hjorth-Jensen, J.S. Vagen

Effective interaction techniques for Gamow shell model     
PRC71,044314(2006).

３）the structure of other effective operators, such as the radius, 
the quadrupole moment, etc.

４）Description of excited states; cf. CCM-eq-of-motion-method



Formulation of UMOA with 2NF and 3NF

( )

;
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∑

∑
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∑

( ), jij i kV V Chiral nuclear interaction

Chiral perturbation theory

Hamiltonian with 2NF and 3NF

Genuine three-nucleon interaction(3NF)

K. Suzuki, Prog. Theor. Phys.79 (1998), 330.



Three-body sub-system Hamiltonian dressed with two-body correlations
in an entire many-body system
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123 123-

123 123

1 2 12
(2)
1233 23 31

e e

( ,) ( )

S SH H

vh h vvh v ++ ++

≡

= + +

( 2) ( 2)
123 123

( 2) ( 2)
123 123

123
-

1 2 3 12 23 31

12 23 311 2 3

- (2)
123 12 23 31

(

123

2)
12

(2)
123 3123

(2)
123

(2 (2 )
122 3

)
1 3

e ( )e

( );

e e ;

as 0

S S

S SNF

h h h v v v

h h h v v v

S S S S

Sv

v

v

v

v

v

v

+ + + + + +

− + + + + +

⇒ = + ≡ + +

⎡ ⎤→ →⎢ ⎥⎣ ⎦

≡

three-body interaction
induced by
the two-body correlations

three-body interaction 
dressed with the two-body correlations

Three-body sub-system Hamiltonian

123 1 2 12 23 31 1 33 2( ) ( ) ,v v vH h vh h≡ + + + ++ +



Calculation of three-body correlation operator

( )
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General solution for the wave operator
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Projection operators in three-body state space

Solution for the three-body subsystem Hamiltonian



Transformed Hamiltonian in terms of three-body correlations 
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Second quantization form 



Decoupling equation for transformed Hamiltonian 
of three-body subsystem

123 123

123 123
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Effective three-body interaction
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123 123 123 123
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Two-body interaction matrix element 
due to 2NF and 3NF
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Microscopic origin of 
Effective NN interaction with density dependence

??? A significant effects  in reproducing
the correct nuclear size ( in 16O )
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(3) (3)
123 0;Q Pv =

(2) (2)
12 0;Q Pv =

(1) (1)
1 0;Q h P =

Short summary

(1)HF=UMOA- CCM-SS ⇔

(1) (2)UMOA- CCM-SDS S ⇔

(1) (2) (3)UMOA- CCM-SDTS S S ⇔

unitary Non-unitary

X

X

= = 0HF:

= = 0= = 0



Overall, the nature of the ‘real’ and ‘effective’ three-  
body forces  remains quite complicated and elusive.

Fayache, Vary, Barrett, Navratil, Aroua, 

An initio No-Core Shell Model with Many-Body Forces
nucl-th/0112066

Not always so. 
It might be possible to formulate it rather transparently.



Summary
• UMOA as an application of effective interaction theory

a unitary coupled cluster method
an algebraic approach
with systematic approximation schemes

• UMOA has been proved to be 
applicable to He, O, Ca isotopes
with high-precision NN interactions

• Challenges; 
incorporation of 3NF

microscopic effective interactions for weakly bound nuclei
a generalization of effective interactions  

from real to complex effective interactions
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