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Aims in Nuclear Structure

Wish to solve to A-body nuclear Hamiltonian
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Low-momentum nucleon-nucleon interaction: Vlow−k

The free N-N interaction generates strongly repulsive and/or diverging matrix
elements at short internucleonic distances. Need a Renormalized Interaction !

Ref.: S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386 (2003) 1 

Different highprecision 
potentials

Universal low
momentum potential
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Vlow−k ; Pros and Cons

1 Energy and nucleus independent interaction.

2 Soft core, suitable for Many-Body perturbation calculations.

3 Means to probe importance of missing Many-Body forces.

4 Generates a cutoff ( λ ) dependence, which can only be removed by
including corresponding Many-Body forces.

Question: Is 3-N force sufficient to remove λ dependence and if so
can the 3-N force be treated perturbatively ?
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Application to light and medium mass nuclei
CCSD with TNF

Coupled Cluster approach to medium mass nuclei

1 Coupled Cluster Theory is fully microscopic .

2 Coupled Cluster is size consistent. The energy of two
non-interacting fragments computed separately is the same as
that computed for both fragments simultaneously.

3 Low computational cost (CCSD scales as n2
on4

u).

4 Capable of systematic improvements.

5 Amenable to parallel computing.

Computational Chemistry: 100’s of publications in any year
(Science Citation Index) for applications and developments.
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Coupled Cluster in pictures
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Application to light and medium mass nuclei
CCSD with TNF

Coupled Cluster meets benchmarks of 3H and 4He!

CCSD(T) and Faddeev (-Yakubovsky) results for 3H and 4He using Vlow−k from
AV18 with Λ = 1.9fm−1. CCSD(T) are within the errors (50 keV) of the Faddeev
results!
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Application to light and medium mass nuclei
CCSD with TNF

Benchmarking 16O with Coupled Cluster Theory

Vlow−k from AV18 with Λ = 2.1fm−1.

N = 11 and lmax = 7 model space gives a shell model dimension of 7E33 !

An exponential fit to the energy minima yields E ≈ −142.9MeV.
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Coupled Cluster Results with TNF

We have derived and implemented Coupled Cluster equations
for three-body Hamiltonians.

Probe cutoff dependence of Vlow−k with three nucleon force
in light and medium heavy nuclei.

Does TNF provide the necessary repulsion/attraction needed
to approach experimental mass values ?

“ Coupled-cluster theory for three-body Hamiltonians “
G.Hagen, T.Papenbrock, D. J. Dean, A. Schwenk, A. Nogga,
M. W loch, P. Piecuch.
To be submitted to PRC.
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Different contributions to ECCSD from TNF in 4He

Three-body Hamiltonian in normal ordered form:
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The “density dependent”
zero-, one-, and two-body
terms of TNF gives the
largest contribution to
ECCSD .
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Coupled Cluster Results for 4He with TNF

Vlow−k from AV18 with Λ = 1.9fm−1.

Exponential fit to the CCSD minima yields E ≈ −28.09 MeV.

Exponential fit to the CCSD(T) minima yields E ≈ −28.24 MeV.
Fadeev-Yakubovski result: = −28.29MeV.
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Berggren-ensemble
CCSD at the dripline

Berggren Single-particle basis

Complex energies requires a generalized completeness relation

|Ψ(r, t)|2 = |Φ(r)|2exp(−Γ

~
t), E = Er − iΓ/2.

1 =
X

n=a,b,c,d

|ψl(kn)〉〈ψ̃l(kn)|+
Z

L+

dk k2|ψl(k)〉〈ψ̃l(k)|.
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Berggren-ensemble
CCSD at the dripline

Coupled Cluster for open quantum systems

Open Quantum System.
Coupling with continuum taken
into account.

Closed Quantum System.
No coupling with external
continuum.
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CCSD at the dripline

Computational cost in full CI vs. CCSD

In our largest Coupled Cluster calculations of the He-chain we
employed ∼ 400 proton and ∼ 500 − 550 neutron orbitals.

Large scale shell model codes can reach dimensions: d ∼ 1E10

Monte-Carlo based shell model codes can reach dimensions:
d ∼ 1E15

Nucleus 4He 6He 8He 9He 10He
Dim 8E+9 1E+14 1E+18 2E+20 1E+22
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CCSD results for Helium chain using Vlow−k
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Λ = 1.9fm−1.

spdfghi partial waves
included in basis

∼ 1000 active orbitals

Underbinding hints at
missing TNF

JUSTIPEN-LACM 05.03.2007 Ab-initio Coupled-Cluster calculations for nuclei



Motivation
Renormalized interactions

Coupled-Cluster approach to nuclear structure
CCSD and open quantum systems

Conclusion

Conclusion and Perspectives

Coupled Cluster meets few-body benchmark calculations; we
have benchmarked 16O with ∼ 1000 active single particle
orbitals.

Coupled Cluster theory with TNF has been derived and
implemented. Benchmarks of 4He has been met.

Our study of different contributions from TNF show that the
zero-, one- and two-body contributions give the major
contributions. Interesting perspective for heavier systems.

Coupled Cluster theory has been succesfully applied to the
description of open-quantum systems. We reproduced basic
features of the Helium chain. Location of dripline in the
Oxygen chain ?
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Convergence of CCSD results

Convergence of 5He ground state energy with increasing number of
partial waves in the basis.
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CCSD results for Helium chain

CCSD results for the ground state energy of the 3−10He isotopes using different model
spaces. In s − g space we have total of ∼ 500 orbitals.

3He 4He 5He 6He
lj Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]
s-p -4.94 0.00 -24.97 0.00 -20.08 -0.54 -19.03 -0.18
s-d -6.42 0.00 -26.58 0.00 -23.56 -0.22 -23.17 -0.08
s-f -6.81 0.00 -27.27 0.00 -24.56 -0.17 -24.69 -0.07
s-g -6.91 0.00 -27.35 0.00 -24.87 -0.16 -25.16 -0.06

Expt. -7.72 0.00 -28.30 0.00 -27.41 -0.33(2) -29.27 0.00

7He 8He 9He 10He
lj Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

s-p -17.02 -0.24 -16.97 -0.00 -15.28 -0.40 -13.82 -0.12
s-d -22.19 -0.12 -22.91 -0.00 -21.34 -0.15 -20.60 -0.02
s-f -24.13 -0.11 -25.28 -0.00 -23.96 -0.06 -23.72 -0.00
s-g -24.83 -0.09 -26.26 -0.00 -25.09 -0.03 -24.77 -0.00
Expt. -28.83 -0.08(2) -31.41 0.00 -30.14 -0.05(3) -30.34 -0.09(6)
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Results for 3H and 4He using Vlow−k

Cusp of Vlow−k at cutoff momentum Λ requires a large number of
nodes in the basis. Can we truncate orbital momentum l at lower
values ?

Vlow−k from
AV18 with
Λ = 1.9fm−1.
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Coupled Cluster Results for Helium isotopes with TNF

CC results with Vlow−k from N3LO NN-interaction. Rather limited model-space
N = 3. Only contact term at NN2LO is retained in the three nucleon force. TNF
fitted to reproduce binding energy of 4He.
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Coupled Cluster Expansion

Coupled-Cluster : An “Exponential Ansatz” for the wave function

ΨCC = exp(T )Φ0 = exp(T1 + T2 + T3 + ...)Φ0, Tn =
X

ab...,ij...

tab...
ij... a†aa

†
b · · · ajai .

The CC correlation energy is : ECC = 〈Φ0| exp(−T )ĤN exp(T )|Φ0〉. By the
Hausdorff commutator expansion and Wick’s theorem the Coupled-Cluster
energy is derived,

ECC =
X

ia

fiat
a
i +

1

4

X
abij

〈ij ||ab〉tab
ij +

1

2

X
ijab

〈ij ||ab〉ta
i t

b
j .

The algebraic equation for the excitation amplitudes tab...
ij... are given by,

〈Φab...
ij... | exp(−T )HN exp(T )|Φ0〉 = 0,

which gives a non-linear set of equations for the excitation amplitudes.
Truncation of the Coupled Cluster operator T leads to :

T = T1 + T2 → CCSD and T = T1 + T2 + T3 → CCSDT.
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CCSD : How deal with explosion of basis states?

Very low neutron separation energy. p−orbits are the main decay channel
and build up the main part of halo-densities.

Protons have large separation energies (20-30 MeV), mainly occupying
deeply bound s-orbits.

Neutrons

15s1/2
15p3/2
15p1/2
4d5/2
4d3/2

.

.

.

5s1/2
4p3/2
4p1/2
4d5/2
4d3/2

.

.

.

Protons

Proton orbitals 
are Oscillators 
restricted
by N = 10 major 
shells and lmax.  

Neutron orbitals are Gamow states
for sp partial waves and Oscillators
for higher partial waves (dg) 
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Convergence of CCSD results

Convergence with respect to the oscillator expansion of the interaction
Vosc ,

〈ab|Vosc|cd〉 ≈
NX

α≤β

NX
γ≤δ

〈ab|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|cd〉,

Convergence with respect to the finite oscillator basis (2n + l ≤ 10) used
for the proton space and the higher partial waves for the neutron space ?

How well are the results converged with respect to the discretization of
the continuum integral defining the Berggren basis for the s − p partial
waves for the neutron space ?

1 =
X

n=a,b,c,d

|ψl(kn)〉〈ψ̃l(kn)|+
Z

L+

dk k2|ψl(k)〉〈ψ̃l(k)|.
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L+

Re[k]

Im[k]

CB

A

Re[k]

Im[k]

BA

Convergence of the
hole and particle
neutron states in 4He
for two very different
contours.
Convergence of the
Hartree-Fock energy
is typically achieved
with n ∼ 20 points.

s1/2 p3/2 s1/2 p3/2

n Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]

15 -24.323 0.000 1.027 -0.536 -24.324 -0.001 1.003 -0.547
20 -24.323 0.000 1.000 -0.546 -24.323 0.000 1.002 -0.547
25 -24.323 0.000 1.002 -0.548 -24.323 0.000 1.002 -0.548
30 -24.323 0.000 1.002 -0.548 -24.323 0.000 1.002 -0.548
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Convergence of CCSD energy with 2n + l ≤ 10 truncation.

Calculations of the
5He ground state
energy starting with
oscillator bases
given for different
~ω values.

Results are well
converged with
respect to oscillator
basis truncation.
∆Re[E ] ∼ 0.1MeV,
∆Im[E ] ∼ 0.01MeV
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Convergence of CCSD energy.

CCSD convergence of 5He ground state energy for the s − d space
(300 orbitals) using n = 20 discretization points for L+. The
calculation where performed using two very different L+ contours
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Comparison of CCSD with full CI

Comparison of CCSD and CCSD(T) with exact calculations of the
3−6He ground states using the low-momentum N3LO
nucleon-nucleon interaction. The single particle model space
consisted of 4s3p1d oscillator states for the proton and neutron
side. The energies E are given in MeV.

Method 3He 4He 5He 6He

CCSD (OSC) -6.21 -26.19 -21.53 -20.96
CCSD (RHF) -6.10 -26.06 -21.55 -20.99
CCSD (SC-RHF) -6.11 -26.06 -21.55 -21.04
CCSD(T) (OSC) -6.40 -26.30 -21.91 -22.83
CCSD(T) (RHF) -6.35 -26.24 -21.90 -22.56
CCSD(T) (SC-RHF) -6.34 -26.24 -21.91 -22.62
Exact -6.45 -26.3 -22.1 -22.7
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Comparison with Shell Model/Configuration Interaction

In Shell Model appraoch a linear excitation operator is used instead of an
exponential. Ψ = (1 + C)Φ0 = (1 + C1 + C2 + ...)Φ0

If truncated disconnected diagrams enter. And it is not size consistent.

Dimension increases dramatically with number of active particles.

Nuclear Example (Kowalski et al PRL 2004).

Comparison of CC with CI
at given excitation level. 
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Brief outline of the Contour Deformation Method

The Schrödinger equation in Momentum space representation,Z ∞

0

dk ′ k ′
2〈k|T + V |k ′〉〈k ′|ψα〉 = Eα〈k|ψα〉,

Analytic continuation in the complex k-plane may be achieved by deforming the
integral giving, ( G Hagen et al 2004 J. Phys. A: Math. Gen. 37 8991-9021.)Z

L+

dk ′ k ′
2〈k|T + V |k ′〉〈k ′|ψα〉 = Eα〈k|ψα〉.

This is analog with the complex scaling method r → r exp(iθ), k → k exp(−iθ).

Discretizing L+, a complete basis within the discretization space is obtained:

1 =

#polesX
p=1

ψp(~k)ψT
p (~k) +

N−#polesX
c=1

ψc(~k)ψT
c (~k), ~k = [k1, ..., kN ] .

Here p denotes pole states and c denotes the non-resonant continuum states.
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Construction of Berggren many-body basis.

Having constructed a single-particle Berggren basis, a many-body Berggren
basis may be constructed in a completely analogous way as when harmonic
oscillator states are used. We construct a complete anti-symmetric N-body
basis from the Slater determinants consisting of the Berggren orbitals ϕnljm i.e.

Φα1,...,αN (1, ...,N) =
1√
N!

˛̨̨̨
˛̨̨ ϕα1(1) . . . ϕα1(N)

...
...

ϕαN (1) . . . ϕαN (N)

˛̨̨̨
˛̨̨ , (1)

where αi labels the single-particle quantum numbers (ni li jimi ). We then have
at hand a complete set of Slater determinants, i.e.

1 =
dX
i

|Φi 〉〈Φ∗
i |, (2)

which the exact many-body wave function may be expanded in. The Shell
Model problem then requires the solution of a complex symmetric N × N
matrix eigenvalue equation,

H|Ψi 〉 = Ei |Ψi 〉, (3)
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Coupled Cluster Amplitude Equations

In CCSD the single ta
i and double excitation amplitudes tab

ij may be
determined from

0 = 〈Φa
i |H|Φ0〉, 0 = 〈Φab

ij |H|Φ0〉;
known as the T1 and the T2 amplitude equations. Writing the
Hamiltonian in normal-ordered form

H =
∑
pq

fpq

{
a†paq

}
+

1

4

∑
pqrs

〈pq||rq〉
{
a†pa

†
qasar

}
+ 〈Φ0|H|Φ0〉
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Coupled Cluster Amplitude Equations

P  ij  f  ij = f  ij − f  ji 

Nonlinear terms in t2
(4th order)

T2 amplitudes from:
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Low-momentum nucleon-nucleon interaction.

1. Modern NN interactions reproduce two
particle scattering data + deuteron properties.
2. They all differ in strength of tensor force 
and treatment of the hardcore.
3. Vlowk from different NN models have 
the same onshell and halfoffshell behaviour
4. At the twobody level Vlowk is 
modelindependent.  
Question: Is this model independence also seen
in A > 2 calculations ? 

A. Schwenk, J.Phys. G31 (2005) S1273
S1282
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Coupled Cluster Results for 16O

Vlowk 16O results using N3LO and CDBonn
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Gamow-Hartree-Fock basis

Two-body matrix elements are calculated numerically in an arbitrary
two-particle Gamow basis by truncating the completeness expansion up
to N harmonic oscillator two-body states

〈ab|Vosc|cd〉 ≈
N∑

α≤β

N∑
γ≤δ

〈ab|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|cd〉. (4)

The Gamow-Hartree-Fock basis may then be constructed,

〈p|hHF|q〉 = 〈p|t|p〉δp,q +
∑
i<ef

〈pi |Vosc|qi〉 (5)
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Dripline - Exploring Open Quantum Systems

Berggren Single-Particle Basis

1 =
∑

n=a,b,c,d

|ψl(kn)〉〈ψ̃l(kn)| +

∫
L+

dk k2|ψl(k)〉〈ψ̃l(k)|.

L

S

C = L + S

Im k

Re kdc

b

a
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Low-momentum nucleon-nucleon interaction.

Vlow−k may be constructed by either Renormalization Group Theories (where high
momentum modes are integrated out) or Similarity Transformation techniques.

P =
˘
|k̄p〉, |k| ≤ Λ

¯
, Q =

˘
|k̄q〉, Λ < |k| < ∞

¯
.

H̃ = X−1HX , |Φk 〉 = X−1|Ψk 〉.

„
PH̃P PH̃Q

QH̃P QH̃Q

« „
PΦk

QΦk

«
= Ek

„
PΦk

QΦk

«
,

Decoupling equation QH̃P = Q(X−1HX )P = 0, Lee-Suzuki gives
X = exp(ω) = 1 + ω where the wave operator ω satisfies the decoupling condition

ω = QωP.

The Lee-Suzuki effective interaction in the P-space is then derived

PVLSP = PH(P + ω)− PH0P = PVP + PVω = PVP + PVQω.
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Coupled Cluster Amplitude Equations

In CCSD the single ta
i and double excitation amplitudes tab

ij may be
determined from

0 = 〈Φa
i |H|Φ0〉, 0 = 〈Φab

ij |H|Φ0〉;

known as the T1 and the T2 amplitude equations.
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Coupled Cluster Amplitude Equations

P  ij  f  ij = f  ij − f  ji 

Nonlinear terms in t2
(4th order)

T2 amplitudes from:
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