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Essential techniques for fast 
computation

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank
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How to “think” multiresolution
• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use 
the difference between successive approximations

– Representation on V0 small/dense; differences sparse

– Computationally efficient; possible insights
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Scaling Function Basis
• Divide domain into 2n pieces (level n)

– Adaptive sub-division (local refinement)

– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

• In each sub-interval define a polynomial basis
– First k Legendre polynomials

– Orthonormal, disjoint support
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Scaling Function Basis - III
2
1( ) , 0, ,3i x iφ = K
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Multiwavelet Basis

• Space of polynomials on level n is Vn

• Wavelets - an orthonormal basis to span 

• Currently use Alpert’s basis

• Vanishing moments
– Critically important property

– Since Wn is orthogonal to Vn the first k moments of 
functions in Wn vanish, i.e., 

• Sparse representations of many physically important 
kernels
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Adaptive Refinement
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – usually use
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1-D example
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Refinement tree in the 
scaling function basis

Refinement tree in the
multi-wavelet basis
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Non-standard form:Telescoping Series
• Pn an orthogonal projection into Vn

• Qn an orthogonal projection into Wn=Vn+1-Vn

Pn+ Qn= Pn+1

• Consider the projection of an operator T
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Non-standard form of operators
• Standard form

– Matrix elements between different length scales
– Not very efficient on modern computers with deep memory 

hierarchies
– Potentially O(Nlog N) non-zero terms

• Non-standard form
– No matrix elements between length scales
– O(N) terms
– Act on (modified) non-standard form of functions
– Easy to compute
– Toeplitz matrix for translationally invariant operators
– Enables true local refinement of functions
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Standard-Form basis in 2-D

0
0 ( )yφ

0
0 ( )yϕ

1
0( )yϕ

1
1 ( )yϕ

2
0 ( )yϕ

2
1 ( )yϕ

2
2 ( )yϕ

2
3 ( )yϕ

0
0 ( )xφ 0

0 ( )xϕ 1
0( )xϕ 1

1 ( )xϕ 2
1 ( )xϕ 2

2 ( )xϕ2
0 ( )xϕ 2

3 ( )xϕ

Tensor product
basis on level 3
(level 3 scaling
functions == 
level 2 wavelets)

Red indicates
the support of 
the function



15

Non-standard-Form basis in 2-D
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Computation of the gradient

'

'

'

1 1 2 1 1
0 0

0 0
0 ' 0 0

1 1 2 1 1
0 0
0 0

0 ' 0 0

1 1 2 1 1
0 0
0 0

0 ' 0 0

( ) ( ) ( )

( ) ( ) ( )

( )
( )

n

n

n

k n k
n n

i i i l i l
i n l i

k n k
n n

i i i l i l
i n l i

k n k
n n

i i i l i l
i n l i

r s r d r

V
r r r c r

q

V r
r dr r s c d

q

ρ φ ψ

φ ψ

ρ

− − − −
′ ′

= = =

− − − −
′ ′

= = =

− − − −
′ ′

= = =

= +

∂ = +
∂

∂ = +
∂

∑ ∑∑∑

∑ ∑∑∑

∑ ∑∑∑∫

Since the basis is orthonormal, the integral is a simple inner product
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• Slice thru grid used to 
represent the nuclear 
potential for H2 using k=7 to 
a precision of 10-5.

• Automatically adapts – it 
does not know a priori where 
the nuclei are.

• Nuclei at dyadic points on 
level 5 – refinement stops at 
level 8

• If were at non-dyadic points 
refinement continues (to 
level ??) but the precision is 
still guaranteed.

• In future will unevenly 
subdivide boxes to force 
nuclei to dyadic points.
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Integral operators in 3D

• Non-standard-form matrix elements easy to 
evaluate from compressed form of kernel K(x)

• Application in 1-d is fairly efficient
– O(Nboxk2) operations

• In 3-d seems to need O(Nboxk
6) operations

– Prohibitively expensive

• Separated form
– Beylkin, Cramer, 

Mohlenkamp, Monzon
– O(Nboxk4) or even O(Nboxk3) in 3D
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Integral Formulation

• E.g., used by Kalos, 1962 
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Converges as a fixed-point iteration without preconditioning
for the lowest eigen function.
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Separated form for integral operators

• Approach in current prototype code
– Represent the kernel over a finite range as a sum of Gaussians

– Only need compute 1D transition matrices (X,Y,Z)

– SVD the 1-D operators (low rank away from singularity)

– Apply most efficient choice of low/full rank 1-D operator

– Working on better algorithms
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Separated form for bound-state 
Helmholtz kernel

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

abserr
relerr

exp(-30*r)/(4πr)
expanded as 36
Gaussians over
[1e-6,1] accurate
to about 1e-5 
relative error 
(until value is
tiny due to exp.
decay).

Logarithmic 
dependence on
precision and
range
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Separated form for integral operators

• Approach in current prototype code
– Represent the kernel over a finite range as a sum of Gaussians

– Only need compute 1D transition matrices (X,Y,Z)

– SVD the 1-D operators (low rank away from singularity)

– Apply most efficient choice of low/full rank 1-D operator

– Even better algorithms not yet implemented
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Integral operators in 3D

• Non-standard-form matrix elements easy to 
evaluate from compressed form of kernel K(x)

• Application in 1-d is fairly efficient
– O(Nboxk2) operations

• In 3-d seems to need O(Nboxk
6) operations

– Prohibitively expensive

• Separated form
– Beylkin, Cramer, 

Mohlenkamp, Monzon
– O(Nboxk4) or even O(Nboxk3) in 3D
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Water dimer LDA
aug-cc-pVTZ geometry, kcal/mol.

-6.483ε=10-3

-7.943ε=10-7

-7.932ε=10-5

-7.941-0.054-7.995aug-cc-pVQZ

-7.906-0.086-7.992aug-cc-pVTZ

-7.805-0.382-8.187aug-cc-pVDZ

-7.888-0.821-8.708cc-pVQZ

-7.810-1.654-9.464cc-pVTZ

-7.775-3.958-11.733cc-pVDZ

CorrectedBSSEUncorrectedBasis
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Benzene dimer LDA
aug-cc-pVDZ geometry, kcal/mol.

CorrectedBSSEUncorrectedBasis

-0.956ε=10-9

-0.956ε=10-7

-0.872ε=10-5

-0.966-0.193-1.159aug-cc-pVTZ

-1.024-0.698-1.722aug-cc-pVDZ

-0.881-0.193-1.074cc-pVQZ

-0.884-0.387-1.271cc-pVTZ

-0.471-1.035-1.506cc-pVDZ
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Stacked benzene – MOs are delocalized by symmetry 
Water cluster – MOs are asymptotically localized 

(long tail is smooth so is inexpensively treated)
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Smoothed Nuclear Potential
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• u(r/c)/c shifts error to r<c
• ε=0.00435*Z5*c3

• <V> accurate due to 
vanishing moments
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Translational Invariance

• Dyadic

10-3 -75.9139

10-5 -75.913564

10-7 -75.91355634

• Non-dyadic

-75.9139

-75.913564

-75.91355635

• Uncontracted aug-cc-pVQZ –75.913002
• Solving with e=1e-3, 1e-5, 1e-7 (k=7,9,11)
• Demonstrates translation invariance and that forcing to dyadic 

points is only an optimization and does not change the obtained 
precision.

• Average orbital sizes 1.6Mb, 8Mb, 56Mb
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High-precision Hartree-Fock
geometry for water

• Pahl and Handy Mol. Phys. 100 (2002) 3199
– Plane waves + polynomials for the core

– Finite box (L=18) requires extrapolation 

– Estimated error 3µH, 1e-5 Angstrom

• k=11, conv.tol=1e-8,ε=1e-9, L=40
– Max. gradient = 3e-8, RMS step=5e-8

– Difference to Pahl 10µH, 4e-6 Angstrom, 0.0012

Basis OH HOH Energy

k=11 0.939594 106.3375 -76.06818006

Pahl 0.939598 106.3387 -76.068170

cc-pVQZ 0.93980 106.329 -76.066676
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He atom Tests, 6-D
• Compute expectation value of the total Hamiltonian for He 

atom with a trial wavefunction in 6-D multiresolution 

– 5-th order multiwavelet bases

– truncation threshold: 1e-3

− 8.000 00

− 7.999 86

− 7.189 87

− 7.189 83

〈Ψ|Vnuc|Ψ〉

−2.750 00

−2.748 40

−2.876 58

−2.873 37

〈Ψ|H|Ψ〉

1.250 00

1.250 04

1.022 15

1.022 19

〈Ψ|1/r12|Ψ〉

c=0.00, ξ=2.0

c=0.50, ξ=2.0 6D MRA

Analytic

6D MRA

Analytic

Kinetic energy is currently a problem for the prototype – will be 
resolved with better refinement criterion 
- in 3D there is no problem; in 6D should get identical result at C=0

( ) ( ) ( )1 2

1 2 12, 1 r rr r c r e ξ− +Ψ = +
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In 3D, ideally must
be one box removed
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full rank
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Timings and sizes
• Wavefunction (k=4, ε=1e-3, deepest n=5) 

– (c=0.5) 0.9GB

– (c=0.0) 42MB

• R12*Wavefunction
– (c=0.5) 1.8GB memory + 0.5h CPU

• Kinetic*Wavefuction
– (c=0.5) 0.8h CPU

– (c=0.0) 50s CPU

• Vnuc*Wavefunction
– (c=0.5)  0.5h CPU

– (c=0.0) 133s CPU

Anticipate 10+x speedup
possible with better 
implementation and algorithms.

But, more general systems will
require deeper refinement and
higher-order wavelets.

Also looking at fast algorithms for
Gaussian geminal form
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High-level composition using 
functions and operators

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions

– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi

J = Coulomb.apply(rho)

• All with guaranteed speed and precision
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Summary
• Multiresolution provides a general framework for 

computational chemistry
– Accurate and efficient with a very small code
– Multiwavelets provide high-order convergence and 

accommodate singularities
• Readily accessible by students and researchers

– Familiar orthonormal basis (Legendre polynomials)
– Compression and reconstruction (c.f., FFT)
– Fast integral operators (c.f., FMM)

• Separated form for operators and functions
– Critical for efficient computation in higher dimension

• Expect speed competitive to Gaussians in near future
– Optimal separated forms for kernels, multi-scale non-linear 

solver, better implementation
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Current and Future Work

• Operators, functions (i.e. for Dirac) over 
complex numbers

• High dimensional 6+ for MADNESS

• Better basis for more compact 
approximation of functions and operators

• Time-dependent solvers

• Hypersingular?
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Example:
Future Separated Representation
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