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Essential techniques for fast
computation
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How to “think” multiresolution

e Consider aladder of function spaces
v, Ovo g BV

— E.g., Increasing quality atomic basis sets, or finer

resolution grids, ...
o Telescoping series
Vo=V t (Vl _Vo) +(V2 _Vl) * - +(Vn _\/n—l)

— Instead of using the most accurate representation, use
the difference between successive approximations

— Representation on V, small/dense; differences sparse

— Computationally efficient; possible insights
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Scaling Function Basis
e Divide domain into 2" pieces (level n)
— Adaptive sub-division (local refinement)
— | sub-interval [I*20,(1+1)*21 1=0,...,n-1
 In each sub-interval define a polynomial basis
— First k Legendre polynomials @(X) = J2i +1P (2x -1)
— Orthonormal, digjoint support 7 (X) =22 p(2"x 1)
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Multiwavelet Basis

Space of polynomialsonlevel nisV,
Wavelets - an orthonormal basisto spanW. =V ., V.
Currently use Alpert’s basis

Vanishing moments
— Critically important property
— Since W, is orthogonal to V,, the first k moments of
functionsin W_ vanish, i.e.,

j X (x)dx =0, j =0,...,k -1

Sparse representations of many physically important
kernels
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Adaptive Refinement
o To satisfy the global error condition

Hf—f”

, <€|fl,

e Truncate according to

d'|, <2 ¢||f],

 Thisisrather conservative — usually use

<&
2
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1-D example

f(x)= (2:)‘1‘ g2’ 4 (2:)411 g al-08)” (2:)31 oot

with k = 6 (#basis fn) and accuracy threshold = 1e-4 \..\ /.e" '"\\
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Non-standard form: Telescoping Series
« P an orthogonal projectioninto V,

e Q. anorthogonal projection intoW =V, _, .-V,
I:)n_l_ Qn: I:)n+1
* Consider the projection of an operator T
T, =RTHK
- (Pn—l +Qn—l)T (Pn—l +Qn—1)
= I:)n—l-l-l:)n—l T Qn —1TQn -1 +Qn —1TPn -1 t I:)n —1TQn 4
= Tn—l T A\—l T Bn—l +Cn—1
n-1
=T+ )2 A +B, +C,
n=0
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Non-standard form of operators

e Standard form
— Matrix elements between different length scales

— Not very efficient on modern computers with deep memory
hierarchies

— Potentially O(Nlog N) non-zero terms

 Non-standard form
— No matrix elements between length scales
— O(N) terms
— Act on (modified) non-standard form of functions
— Easy to compute
— Toeplitz matrix for trandationally invariant operators
— Enablestrue local refinement of functions
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Standard-Form basisin 2-D
B(X) P(X) Fo(X) G (X) de(X) F7(X) P53 (X) P2(X)

XN
~~
\<

—’

8 |

Tensor product
basis on level 3
(level 3 scaling
functions ==
level 2 wavelets)

Red indicates

the support of
the function
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Non-standard-Form basisin 2-D

oM {2004}
... (# W, A OGN, #OF (Y} 1,m=0,.,2" 1

Red indicates function support




Computation of the gradient

'O(r):z 10 (r)+2_42_42_4dl_l_w_ql_(r)
av k-1 n-12" -1 k-1
a_q(r) 2 Moo r)+ZZZC|_I_‘:”TI_(r)
j a\g((f)ﬂ (r)dr =) u_oo +Z_4 Z: Z_qu_du_nl_

Since the basis is orthonormal, the integral is a simple inner product
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o Slice thru grid used to
represent the nuclear
potential for H, using k=7 to
aprecision of 10>,

» Automatically adapts — it
does not know a priori where
the nucle are.

* Nuclei at dyadic points on
level 5 — refinement stops at
level 8

* If were at non-dyadic points
refinement continues (to

level ??) but the precisionis
still guaranteed.

o In future will unevenly
subdivide boxesto force

nuclel to dyadic points.
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Integral operatorsin 3D
T+ f :jdsK(r ~9) f(s)

Non-standard-form matrix elements easy to
evaluate from compressed form of kernel K(x)
Application in 1-d isfairly efficient nl
— O(N,,K?) operations rii !
In 3-d seems to need O(N, K°) operations
— Prohibitively expensive r nl
Separated form IRVINLLY

— Beylkin, Cramer, i wan' Yz
Mohlenkamp, Monzon

— O(N,,.k*) or even O(N,,.k3) in 3D =



Integral Formulation

e E.g., used by Kalos, 1962

(-10% Vv = m
Y = 2(-[F- 2E) W

= -2G* (VW)

o
4rlr =5

Converges as a fixed-point iteration without preconditioning
for the lowest eigen function. 20

(G* £)(r) = jds f(s) in3D; k?=-2E



Separated form for integral operators
T+ f :jdsK(r ~9)f(s)

« Approach in current prototype code
— Represent the kernel over afinite range as a sum of Gaussians

K(r)=> we™ +0(s)

— Only need compute 1D transition matrices (X,Y,Z)

— SVD the 1-D operators (low rank away from singularity)
— Apply most efficient choice of low/full rank 1-D operator
— Working on better algorithms
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Separated form for bound-state
Helmholtz kernel

exp(-30*r)/(4mr)

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
Le+00  @Xpanded as 36
W/\/\ m Gaussians over
i vn “v“ — i te0r [1e-6,1] accurate
v WWMH —relerr V to about 1e-5
| vvunv“ LE02| relative error
V\WW\ | (\/ (until valueis
| M 1E03| i
a V\I\p tiny due to exp.
W/\M/\n A AHN | decay).
' ‘ vuV 1.E-04
W\Mﬁ W ” L ogarithmic
M % dependence on
MM | reson
1.E- 22
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Separated form for integral operators
T+ f :jdsK(r ~9)f(s)

« Approach in current prototype code
— Represent the kernel over afinite range as a sum of Gaussians

K(r)=> we™ +0(s)

— Only need compute 1D transition matrices (X,Y,Z)

— SVD the 1-D operators (low rank away from singularity)
— Apply most efficient choice of low/full rank 1-D operator
— Even better algorithms not yet implemented
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Integral operatorsin 3D
T+ f :jdsK(r ~9) f(s)

Non-standard-form matrix elements easy to
evaluate from compressed form of kernel K(x)
Application in 1-d isfairly efficient nl
— O(N,,K?) operations rii !
In 3-d seems to need O(N, K°) operations
— Prohibitively expensive r nl
Separated form IRVINLLY

— Beylkin, Cramer, i wan' Yz
Mohlenkamp, Monzon

— O(N,,.k*) or even O(N,,.k3) in 3D “



Water dimer LDA
aug-cc-pV TZ geometry, kcal/mol.

Basis Uncorrected BSSE Corrected
cc-pvVDZ -11.733 -3.958 -1.775
cc-pvVTZ -0.464 -1.654 -7.810
cc-pvVQZ -8.708 -0.821 -7.888

~~ aug-cc-pvDZ -8.187 -0.382 -7.805
1 aug-cc-pvVTZ -7.992 -0.086 -7.906
aug-cc-pvQZ -7.995 -0.04 -7.941

=103 -6.483

e=10° -7.932

e=10" -7.943
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Benzene dimer LDA
aug-cc-pVDZ geometry, kcal/mol.

Basis Uncorrected
cc-pvDZ -1.506
cc-pvTZ -1.271
cc-pVQZ -1.074
aug-cc-pvDZ -1.722
aug-cc-pvTZ -1.159
£=10" -0.872
=10/ -0.956
=107 -0.956 2




LDA scaling with Z and system size (energy €=10)

1200 200
t / sec = 0.27117% + 19.507Z + 10.682 ——time/min A
150 L —m-2255:m1.86
800 1 6.1*N+17.3* M2

r

0 T T \ 0
0 10 20 30 40 1 2 3

Alkali earth atoms Z=4,12,20,38 (CeHg), MP2 aug- cc-vaZ geometry
>~

(H:0),n=59 .. t=0(n"") _a » - JD 'X’

Stacked benzene — MOs are delocalized by symmetry
Water cluster —MOs are asymptotically localized
(long tail is smooth so isinexpensively treated) *’
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Smoothed Nuclear Potential

efr 1

u(r) = , +3\/7_T

jdrrz”‘(u(r)—%j =0 for n=0,1,2
0

(e‘rz +16e"”2)

 u(r/c)/c shiftserrortor<c
e £=0.00435*Z2>*c3

e <V> accurate dueto
vanishing moments

o o2 04 Ok O8 1 12 14 1B 183 2 ’g
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Trandationa Invariance

e Dyadic  Non-dyadic
103 -75.9139 -75.9139
10~ -75.913564 -75.913564 *
107 -75.91355634 -75.91355635

 Uncontracted aug-cc-pV QZ —75.913002

e Solving with e=1e-3, 1e-5, 1e-7 (k=7,9,11)

» Demonstrates trandlation invariance and that forcing to dyadic
points is only an optimization and does not change the obtained
precision.

» Average orbital sizes 1.6Mb, 8Mb, 56Mb

*"_'. .



High-precision Hartree-Fock

geometry for water

« Pahl and Handy Mol. Phys. 100 (2002) 3199
— Plane waves + polynomials for the core
— Finite box (L=18) requires extrapolation
— Estimated error 3uH, 1e-5 Angstrom
e k=11, conv.tol=1e-8,&=1e-9, L=40
— Max. gradient = 3e-8, RM S step=5e-8
— Difference to Pahl 10uH, 4e-6 Angstrom, 0.0012

Basis OH HOH Energy
k=11 0.939594 106.3375 -76.06818006
Pahl 0.939598 106.3387 -76.068170

cc-pvVQZ  0.93980 106.329 -76.0606676 *



He atom Tests, 6-D

o Compute expectation value of the total Hamiltonian for He
atom with atrial wavefunction in 6-D multiresolution

— 5-th order multiwavel et bases

— truncation threshold: 1e-3 _
W(r,r,)=(1+cr,)e e

(WHIY) [ (PN l®) | (P19
c=0.50,&=2.0 | 6DMRA | -287337 |-7.18983| 1.02219
Analytic -2.87658 | —7.18987 | 1.022 15
c=0.00,&=2.0 | 6DMRA | —-2.74840 |-7.99986| 1.25004
Anaytic -2.7/5000 | -8.00000| 1.25000

Kinetic energy Is currently a problem for the prototype — will be
resolved with better refinement criterion o
- 1n 3D there is no problem; in 6D should get identical result at C=0



x=y| =3 £,(09,()

H=1

r = separation rank

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagonal
r = O(-log &)
32




Timings and sizes
Wavefunction (k=4, e=1e-3, degpest n=5)

— (c=0.5) 0.9GB
— (c=0.0) 42MB
R12*\Wavefunction

— (c=0.5) 1.8GB memory + 0.5h CPU

Kinetic* Wavefuction
— (c=0.5) 0.8h CPU

— (c=0.0) 50s CPU

V nuc* Wavefunction

—(c=0.5) 0.5h CPU
—(c=0.0) 133sCPU

Anticipate 10+x speedup
possible with better
implementation and algorithms.

But, more general systems will
require deeper refinement and
higher-order wavelets.

Also looking at fast algorithms for
Gaussian geminal form 33



High-level composition using
functions and operators

e Conventional quant. chem. uses explicitly
Indexed sparse arrays of matrix elements

— Complex, tedious and error prone

* Python classes for Function and Operator
—1n1,2,3,6 and general dimensions Hg = —% g+ Vo

— wide range of operations I(r)=G* p
Hpsi = -0.5*Del sg*psi + V*psi 0(s)

- =j ds
J = Coul onb. appl y(r ho) Ir —s]

 All with guaranteed speed and precision



Summary

Multiresolution provides a general framework for
computational chemistry

— Accurate and efficient with avery small code

— Multiwavel ets provide high-order convergence and
accommodate singularities

Readily accessible by students and researchers
— Familiar orthonormal basis (Legendre polynomials)
— Compression and reconstruction (c.f., FFT)

— Fast integral operators (c.f., FMM)

Separated form for operators and functions
— Ciritical for efficient computation in higher dimension

Expect speed competitive to Gaussians in near future

— Optimal separated forms for kernels, multi-scale non-linear

solver, better implementation -



Current and Future Work

Operators, functions (i.e. for Dirac) over
complex numbers

High dimensional 6+ for MADNESS

Better basis for more compact
approximation of functions and operators

Time-dependent solvers
Hypersingular?
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Exampl e:
Future Separated Representation

H = (_Aj'I'HXj HZ)

N
J=1

M N

A — .2 —_ .—.2 — .2
_1:2\/\{11[_'6 mllX | eUmIIX, il e mllY;

L ]=1
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