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DISCLAIMER

I Shell structure is usually discussed in terms of
the spectrum of eigenvalues of the single-particle
Hamiltonian εµ in even-even nuclei

ĥψµ = εµ ψµ

I The εµ provide at best a zeroth-order
approximation to empirical single-particle
energies, that are obtained as separation energies
(i.e. differences of total binding energies)

I The two many-body states that are compared
with Sn are significantly different

I Rearrangement effects of the mean field, the
different structure of the mean-field state of an
even-even and an odd-A nucleus (blocking,
additional mean fields that originate from
interactions involving currents and spin densities
in the odd-A nucleus from broken time-reversal
invariance, . . . ) different amount correlations
beyond the mean field in magic and non-magic
nuclei add significant corrections

K. Rutz, M. B., P.-G. Reinhard, J. A. Maruhn and W. Greiner,

Nucl. Phys. A634 (1998) 67

E.

Litvinova, P. Ring, Phys. Rev. C 73 (2006) 044328
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Open problems: single-particle spectra of doubly magic nuclei
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Open problems: single-particle spectra

M. B., P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 (2003) 121.
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Open problems: collectivity

M. B., P. Bonche, P.-H. Heenen, Phys. Rev. C 74 (2006) 024312
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I relative position of collective states can be
traced back to the underlying single-particle
spectrum
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Open problems: masses

I deep ravines in the mass resisuals of
heavy nuclei when plotted for isotopic
chains against neutron number

I much smoother behaviour when
plotted for isotonic chains against
proton number

M. B., G. F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006).
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Where to start?

I It would be naive to expect a single explanation for all problems

I Still, one can hope that a limited number of modifications of the effective
interaction and/or the fit protocol gives a major improvement

I If many little changes are necessary, we have an obvious uncurable
problem.

What to look at?

I density dependences of coupling constants?

I three-body force (including momentum-dependent terms)?

I tensor force?

I higher-order derivative terms?

I Finite range? Finite non-locality?

The degrees of freedom associated with a zero-range tensor force are the
obvious missing piece in – and of the same order as - the standard Skyrme
interaction, and it is known to cause local modifications of shell structure, not
global ones.
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Skyrme’s zero-range tensor force

v
tensor = 1

2
te [3 (σ1 · k

′) (σ1 · k
′) − (σ1 · σ2) k

′2 δ

+3 δ (σ1 · k) (σ1 · k) − δ (σ1 · σ2) k
2]

+to [3 (σ1 · k
′) δ (σ1 · k) − (σ1 · σ2) k

′ · δ k]

T. H. R. Skyrme, Philos. Mag. 1, 1043 (1956); Nucl. Phys. 9, 635 (1959).

General properties of any tensor force

I vanishes for relative S states

I only acts in spin-triplet states

Particular properties of Skyrme’s zero-range tensor force

I even isospin-singlet te term mixes S and D waves

I odd isospin-triplet to term mixes P and F waves
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Skyrme’s zero-range tensor force II. Energy functional

The two-body tensor force gives the energy functional

E tensor =

Z

d
3
r

X

t=0,1



B
T
t

“

st · Tt −
X

µ,ν=x,y,z

Jt,µνJt,µν

”

+ B
F
t

h

st · Ft −
1
2

“

X
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Jt,µµ

”2

− 1
2

X

µ,ν=x,y,z

Jt,µνJt,νµ

i

+ B
∆s
t st · ∆st + B

∇s
t (∇ · st)

2

ff

Definition of the local densities

B
T
0 = − 1

8
(te + 3to) B

T
1 = 1

8
(te − to)

B
F
0 = 3

8
(te + 3to) B

F
1 = − 3

8
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B
∆s
0 = 3

32
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1 = 9

32
(te − to)

B
∇s
0 = 9

32
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∇s
1 = − 3

32
(3te + to)

I Two new terms proportional to BF
t and B∇s

t
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Don’t confuse the tensor force with the J2 terms from the central force

The central Skyrme force

v
central = t0 (1 + x0P̂σ) δ + 1

6
t3 (1 + x3P̂σ) ρα δ

+ 1
2
t1 (1 + x1P̂σ)

`

k̂
′2
δ + δ k̂

2´

+t2 (1 + x2P̂σ) k̂
′
· δ k̂

and the spin-orbit force

v
LS = iW0 (σ̂1 + σ̂2) · k̂

′
× δ k̂

combined give the energy functional

E =

Z

d
3
r
X

t=0,1

»

A
ρ
t ρ

2
t + A

s
ts

2
t + A

∆ρ
t ρt∆ρt + A

∆s
t st · ∆st + A

τ
t (ρtτt − j

2
t )

+A
T
t

“

st · Tt −
X

µ,ν=x,y,z

Jt,µνJt,µν

”

+ A
∇·J
t (ρt∇ · Jt + st · ∇ × jt)

–

.

where A
ρ
t and As

t are density-dependent. Definition of the local densities
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What J2 term ???

It is often neglected in parameterizations of Skyrme’s interaction and/or
calculations because

I the resulting mean field is difficult to derive and implement in deformed

codes and very time-consuming to calculate

I the term sometimes gives bizarre solutions, as ”the presence of this term
often favors an energetically lowest HF solution where unoccupied levels
are below the Fermi surface”, as pointed out in Sect. 2.4. of M. Beiner, H.
Flocard, Nguyen Van Giai, and P. Quentin, Nucl. Phys. A238, 29 (1975).

I By contrast, in (Q)RPA codes these terms are often included even for
parameterizations where they should not, as it is difficult to take them out
when the Skyrme force is used directly as residual interaction.
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Combined central + LS + tensor energy functional I

ESkyrme = E central + ELS + E tensor

=

Z

d
3
r

X

t=0,1
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ff

.

This functional contains all possible terms up to second order in the derivatives
that can be constructed from local densities that are invariant under spatial
and time inversion, rotations, and gauge transformations.

Definition of the local densities Definition of the coupling constants
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Single-particle Hamiltonian

ĥq = Uq(r) − ∇ · Bq(r)∇ − i
2
[Wq(r) ⊗∇σ + ∇σ ⊗ Wq(r)]

+Sq(r) · σ̂ − ∇ · [σ̂ · Cq(r)]∇ − ∇ · Dq(r) σ̂ · ∇

− i
2
[Aq(r) · ∇ + ∇ · Aq(r)]

I The tensor force contributes to W, S, C, and D.

I D is a new term that appears only with a tensor force

I The tensor force also gives a contribution with a new structure to
∇σ ⊗ Wq(r)

⇒ too complicated to start with
⇒ go step by step: spherical, deformed with parity, deformed with broken
parity, deformed with broken time-reversal invariance
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Spherical symmetry / approximation I

I sphericity imposes time-reversal symmetry s = T = F = j = 0

I all vectors are proportional to to the radial unit vector J = Jrer .

I For symmetry reasons J(0) = J(2) = 0

Skyrme energy functional
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Tensor term
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Spherical symmetry / approximation I

Alternatively, the energy functional can be formulated with proton and neutron
densities, for the tensor term one obtains

ET =

Z

d
3
r
˘

1
2
α (J2

n + J
2
p) + β Jn · Jp

¯

with

C
J
0 = 1

2
(α+ β)

C
J
1 = 1

2
(α− β). (1)

Again α = αC + αT

αC = 1
8
(t1 − t2) −

1
8
(t1x1 + t2x2) βC = − 1

8
(t1x1 + t2x2)

αT = 5
4
to = 5

12
U βT = 5

8
(te + to) = 5

24
(T + U)
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A brief history of tensor forces in self-consistent mean-field models

Skyrme

I a zero-range tensor force was contained in
Skyrme, Philos. Mag. 1 (1956) 1043; Nucl.
Phys. 9 (1959) 615

I J2 terms added to SIII without refit by Stancu,
Brink, and Flocard, Phys. Lett. 68B (1977)
108

I Fit with unconstrained J2 terms by Tondeur,
Phys. Lett. 123B (1983) 139

I generalized Skyrme force with tensor force by
Liu, Luo, Ma, Shen, and Moszkowski, Nucl.
Phys. A534 (1991) 1

I Brown, Duguet, Otsuka, Abe and Suzuki,
Phys. Rev. C 74 (2006) 061303: fit of a
Skyrme force with a tensor force constrained
by ab-initio arguments

I Dobaczewski, nucl-th/0604043, J2 terms
added without refit to SLy4

I Colo, Sagawa, Fracasso, and Bortignon Phys.
Lett. B (2007) in press: tensor force added
without refit to SLy5; GT giant resonance
energy estimated using a sum-rule approach

Gogny

I calculation of matrix elements of a
Gaussian finite range tensor force
discussed in Gogny’s seminal paper Nucl.
Phys. A237 (1975) 399

I Onishi and Negele, Nucl. Phys. A301,
336 (1978) propose a finite- range force
of Gogny type with a finite-range tensor
force and zero-range three-body forces,
including momentum-dependent terms.

I Otsuka, Matsuo, and Abe, Phys. Rev.
Lett. 97 (2006) 162501, Gogny force with
finite-range tensor force.
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Parameter space covered by our fits
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I Values of C J
0 and C J

1 for our set of
parameterizations.

I Diagonal lines indicate α = C J
0 + C J

1 = 0
(pure neutron-proton coupling) and
β = C J

0 − C J
1 = 0 (pure like-particle coupling).

I Values for classical parameter sets are also
indicated, with SLy4 representing all
parameterizations for which J2 terms have
been omitted in the fit.
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Fit protocol and quality

I Fit protocol nearly identical with that of the
Saclay-Lyon parameterizations SLyx

I E and rch of 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb;
E of 100Sn; the spin-orbit splitting of the neutron 3p
state in 208Pb; the empirical E/A and ρ at the
saturationpoint; E/A of neutron matter as predicted
by Wiringa et al.

I constrained: K∞ = 230 MeV, aτ = 32 MeV.
Thomas-Reiche-Kuhn sum-rule enhancement factor
κv = 0.25

I Using a single density-dependent term, m∗
0 /m cannot

be chosen independently from K∞ for a given
exponent of ρα

0 (r). We follow the prescription used
for the SLy parameterizations and use α = 1/6, which
leads to m∗

0 /m ≈ 0.7

I no constraint x2 = −1 (stability of neutron matter
against ferromagnetism)
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I cost function χ2 as
defined in the fit

I Contour at χ2 = 11, 12,
15, 20, 25, and 30

I minimum: T21
(χ2 = 10.05),
maximum: T61
(χ2 = 37.11)
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Tensor term contribution to the J2 term coupling constant at sphericity

total coupling constant C J
t = AJ

t + BJ
t

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

-90 -60 -30  0  30  60  90  120  150  180  210  240

C
J 1 

[M
ev

 f
m

5 ]

CJ
0 [Mev fm5]

T11

T12

T13

T14

T15

T16

T21

T22

T23

T24

T25

T26

T31

T32

T33

T34

T35

T36

T41

T42

T43

T44

T45

T46

T51

T52

T53

T54

T55

T56

T61

T62

T63

T64

T65

T66
SLy4

SLy5

SkP

SkO’

BSk9T6
Zσ

tensor contribution BJ
t

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

-150 -120 -90 -60 -30  0  30  60  90  120  150  180

B
J 1 

[M
ev

 f
m

5 ]

BJ
0 [Mev fm5]

T11

T12

T13

T14

T15

T16

T21

T22

T23

T24

T25

T26

T31

T32

T33

T34

T35

T36

T41

T42

T43

T44

T45

T46

T51

T52
T53

T54

T55

T56

T61

T62

T63
T64

T65

T66

I The contribution from the central force is mainly of like-particle type and
very similar for all our parameterizations

I The little scatter of the central force contribution is not surprising, the
coupling constants AJ

t are depend on those that determine the effective
mass and surface tension Aτ

t and A
∆ρ
t
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Do the other coupling constants significantly change?
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I Example: spin-orbit coupling constant
W0

I The contour lines differ by
20 MeV fm5.

I T11: 103.7 MeV fm5

T66: 195.3 MeV fm5
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Do the other coupling constants significantly change?
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I Example: spin-orbit coupling constant
W0

I The contour lines differ by
20 MeV fm5.

I T11: 103.7 MeV fm5

T66: 195.3 MeV fm5

I yes, they do!

I Strong rearrangement of other coupling
constants

I It is advised not to add a tensor force
to an existing parameterizations
without refitting the entire parameter
set

I The origin of the correlation between
W0 and the C J will be explained in a
few slides
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Contribution of the J2 terms to the spin-orbit potential in Ni isotopes I

neutron spin-orbit density
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I spin-orbit density oscillates between
near zero values for the spin-saturated
N = 20 and N = 40 isotopes and large
values when the 1f7/2 and 1g9/2 are
filled

I for ”spin-saturated” nuclei J is not
exactly zero

I oscillations at small radii from the
filling of orbits with one node (2p and
2d))

I The tensor term contributions (central
and tensor forces) to the spin-orbit
potential is strictly proportional to Jn

and Jp
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Contribution of the J2 terms to the spin-orbit potential in Ni isotopes II
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Contribution of the J2 terms to the spin-orbit potential in Ni isotopes III

proton spin-orbit potential
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single-particle spectra with
T22 (no J2 term)
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single-particle spectra with
T44 (proton-neutron +
like-particle J2 terms)
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I proton spin-orbit potential more robust

I influence on single-particle energies stays subtle (for Ni isotopes with this
parameterization T44)
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Spin-orbit splittings I. within a major shell
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Spin-orbit splittings I. within a major shell
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I Relative error of spin-orbit splittings
within a major shell in doubly-magic
nuclei for ` ≤ 2 levels.

I staying within the same major shell,
the empirical splittings are relatively
robust against correlations

I all but the 1p states in 16O have one or
more nodes.

I Spin-orbit splittings are too large

I a known problem that is even amplified
in the presence of tensor terms
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Where does the correlation between W0 and C J
0 come from?

Define the combined spin-orbit and tensor term contribution
to the binding energy

E
spin
0 (N, Z) = C∇J

0 C∇J
0 (N, Z) + C J

0 CJ
0 (N, Z)

with

C∇J
0 (N, Z) =

Z

d
3r ρ0∇ · J0

CJ
0 (N, Z) =

Z

d
3r J2

0.

The integrals are fairly independent on the parameterization
Look at difference between 56Ni and 40Ca

∆E spin = E
spin
0

`

56Ni
´

− E
spin
0

`

40Ca
´

and set-up the estimate for C∇J
0 as a function of C J1

0

C∇J
0 =

∆E spin − C J1
0 〈CJ

0

`

56Ni
´

− CJ
0

`

40Ca
´

〉

〈C∇J
0 (56Ni) − C∇J

0 (40Ca)〉
.
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I Correlation between the of spin-
orbit coupling constant C∇J

0 and
the isoscalar spherical effective
spin-current coupling constant
C J1

0 . Dots: values for the actual
parameterizations TIJ, solid line:
trend estimated
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Spin-orbit splittings II. intruder states
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Spin-orbit splittings II. intruder states
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I spin-orbit splittings of intruder levels across
the Fermi energy

I This quantity is not robust against
correlations, which will pull down levels above
and push up levels below the Fermi energy
and significantly decrease the calculated
values

I empirical value establishes a lower limit for
what should be found with the eigenvalues of
the spherical mean- field Hamiltonian ĥ

I calculated values are often even smaller

I large tensor terms amplify this deficiency

I We have to re-evaluate above’s finding:
spin-orbit splittings are not too large in
general. There is a missing trend with angular
momentum and/or the number of nodes

I proton-neutron staggering ⇒ missing isospin
trend?
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Where does the trend with node number come from?

see also B. A. Brown, T. Duguet, T. Otsuka, D. Abe, T. Suzuki, Phys. Rev. C74 (2006) 061303
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Neutron spin-orbit potential (bottom)
and the radial wave function of selected
orbitals (top) in 132Sn.
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Where does the trend with node number come from?

see also B. A. Brown, T. Duguet, T. Otsuka, D. Abe, T. Suzuki, Phys. Rev. C74 (2006) 061303
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Neutron spin-orbit potential (bottom)
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orbitals (top) in 132Sn.

I might be geometrical effect from overlap
with spin-orbit potential

I larger sensitivity of the nodeless levels to
the J2 terms as the major contribution to
J is most often from nodeless states; hence
the nodeless states have large overlap with
the tensor term contribution (we use
zero-range interactions, after all) while
levels with nodes have their nodes where

I Note that the refit of the other coupling
constants increases the spin-orbit force
such that the depth of the spin-orbit
potential stays the same; mainly its width
changes for our parameterizations

I No, we do not want to change the sign of
the tensor contribution. This leads to
instabilities that will be discussed below.
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Single-particle spectra of 132Sn
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Single-particle spectra of 132Sn
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I notorious for wrong relative order of
the last occupied neutron levels 1h11/2,
2d3/2 and 3s1/2.

I underestimated spin-orbit splitting of
the intruder for large tensor terms
amplifies the problems

I centroid

εcent
qn` =

` + 1

2` + 1
εqn`,j=`+1/2

+
`

2` + 1
εqn`,j=`−1/2.

of the intruder seems to be too high
for the neutrons (attention, might not
be robust)
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Single-particle spectra of 208Pb
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I similar problems as for 132Sn, only
sligthly more subtle
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Single-particle spectra of 40Ca
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Single-particle spectra of 40Ca
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I spin-saturated nucleus (N = Z = 20)

I the evolution of levels seen is the background

from the readjustment of all coupling
constants

I genuine spin-orbit interaction too large

I gap at 20 too small, even disappears for large
J2 coupling constants

I for large J2 coupling constants the also large
spin-orbit term pulls the 1f7/2 intruder (the J2

terms always near zero)

I For not spin-saturated doubly-magic nuclei the
intruders are pushed up: the J2 contribution
overcompsensates the larger spin-orbit
coupling W0

I with our fit protocol, W0 is correlated to C J
0 ,

such that (T24, T42) and (T26, T44, T62)
give similar single-particle spectra for 40Ca
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Single-particle spectra of 48Ca
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Single-particle spectra of 48Ca
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I protons spin saturated (Z = 20)

I large neutron Jn (1f7/2 filled, 1f5/2 empty)

I depending on the combination of
proton-neutron and like-particle coupling
constants, J2

n contributes to the spin-orbit
potential of the neutrons or the protons or
both

I pure proton-neutron J2 term (T42, T62):
same problems for protons from readjustment
of W0 as for 40Ca, at the same time neutron
N = 20 gap too much opened, N = 28 gap
too small

I pure like-particle J2 term (T24, T26): opposite
effect: Z = 20 gap opened (overcompensation
of increased W0), neutron gaps more realistic

I comibations of both give anything in between
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Single-particle spectra of 56Ni

-16

-14

-12

-10

-8

ε i
 [

M
eV

]

56Ni, ν

Exp. T22

28

T24 T26 T42 T44 T46 T62 T64 T66

7/2-

3/2-
5/2-
1/2-

1f7/2

2p3/2

1f5/2

2p1/2

-8

-6

-4

-2

 0

 2

ε i
 [

M
eV

]

56Ni, π

Exp. T22

28

T24 T26 T42 T44 T46 T62 T64 T66

7/2-

3/2-
5/2-
1/2-

1f7/2

2p3/2

1f5/2

2p1/2

M. Bender, CEN Bordeaux Gradignan Tensor terms in the Skyrme energy density functional



Single-particle spectra of 56Ni
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I large proton and neutron J (1f7/2 filled, 1f5/2

empty for both)

I N = Z : spectra of 56Ni depend only on C J
0 .

I This statement is less trivial than it seems: for
the contribution of the J2 it is obvious, but
the the background shift from the
rearrangement of the other coupling constants
is mainly correlated to C J

0 as well.

I gap at 28 too small for all parameterizations

I smaller shifts of the single-particle than for
40Ca ⇒ J2 contributions compensate
background shift from increasing W0
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Single-particle spectra of 90Zr
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Single-particle spectra of 90Zr
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I protons: N = 40 spin saturated

I neutrons: very large Jn (highly degenerate
1g9/2 filled, 1g7/2 empty)

I depending on the combination of
proton-neutron and like-particle coupling
constants, J2

n contributes to the spin-orbit
potential of the neutrons or the protons or
both

I pure proton-neutron J2 term (T42, T62):
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Instability – phase transition - coexistence phenomena

(0) Jq is not a bulk property, but a shell effect. It
varies rapidly between near-zero and substantial
values. (1) Multiplying a large Jq with a large
coupling constant leads (2) to a large contribution to
the spin-orbit potential

Wn(r) = −
W0

2

`

2∇ρn + ∇ρp) + α Jn + β Jp

which (3) might switch levels originating from
different j shells, which further increases J. Feed this
back to (1) and you have an instability towards
unrealistic spectra

I fits in many regions of the parameter space not
covered by our parameter sets have this
instability

I there is even ”spin-orbit current coexistence”

I constraint on

C =

Z

d
3
r Jn · ∇ρn

-1025

-1020

-1015

-1010

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

E
 [

M
eV

]

C

SLy5
TXX

-15

-10

-5

 0

ε i
 [

M
eV

]

120Sn

50

82

SLy5 (a)

70

90

(b)

50

SLy5 (a) (b)

1g9/2

2d5/2

1g7/2

3s1/2

2d3/2

1h11/2

2f7/2

3p3/2

3p1/2

2p3/2

2p1/2

1f5/2

1g9/2

2d5/2

3s1/2

1h11/2

2d3/2

1g7/2

I TXX : parameter set with large
negative α and β
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What we have learnt so far

Within the Skyrme energy functional and the fit protocol we use

I the spin-orbit coupling constant W0 is correlated to CT
0 trough the masses

of 40Ca and 56Ni in the fit

I the spin-orbit and J2 terms are misused in the fit to get the masses of 40Ca
and 56Ni right, simulating missing physics (which is not the Wigner term)

I without J2 terms, the spin-orbit splittings within a major shell (states with
1 or more nodes) are too large, those of the intruders across the gap are
too small.

I positive proton-neutron and like-particle coupling constants of the J2

terms make this usually worse

I negative coupling constants of the J2 terms (might) lead to instabilities
towards unphysical single-particle spectra

I in lowest order, the deficiency of the splittings does probably not originate
from the J2 terms, but the spin-orbit force (which always dominates the
splittings)

I centroids of the neutron intruder states in heavy doubly-magic nuclei
might be placed too high

. . . and we have not looked into tensor term specific observables yet.
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Evolution of spin-orbit splittings: proton levels in Sn (Z = 50)
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I 2d5/2 and π 1g7/2: change of ground state spin of
odd-A Sb isotopes between N = 70 and 72

I 1g7/2 and 1h11/2: PRL by Schieffer et al.

I these are open-shell nuclei, unclear effect of correlations
on the ”single-particle energies”.

I How to compare calculation with empirical data in view
of the deficiencies of the single-particle spectra in
doubly-magic nuclei outlined above?

I absolute energy difference is arbitrary (can be
normalized out, see papers by Otsuka et al.)

I look at the bend of the curves

I but: if the bend is determined by the proton-neutron
Jp · Jn terms, then it sets in up to 4 mass units too
large, as the ν 1h11/2 is occupied too late (see spectrum
of 132Sn above)

I positive Jp · Jn coupling constant needed in both cases
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Evolution of spin-orbit splittings: proton levels in Ni (Z = 28)
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I distance between 1f5/2 and 2p3/2 levels

I compensation of two effect: without J2 terms
at sphericity (see T22), the spin-orbit
splittings are reduced by the increasing
diffuseness of the neutron surface

I positive Jp · Jn coupling constant needed to
compensate this effect to obtain the flat curve

M. Bender, CEN Bordeaux Gradignan Tensor terms in the Skyrme energy density functional



Evolution of spin-orbit splittings: neutron levels in Ca and Ni

I How to narrow down the like-particle coupling strength?

I ⇒ look at neutron states in doubly-magic nuclei in an isotopic chain
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I double difference takes out deficiencies from
central and spin-orbit force

I separated by more than 2 MeV in 40Ca, nearly
degenerate in 48Ca
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I 1f5/2 level comes further down than the 2p1/2

level when going from 56Ni to 68Ni

I both differences aare reproduced α ≈ 120 MeV
fm5
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Mass residuals
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contribution of the spin-orbit and tensor terms to the total binding energy
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S2n in the Sn isotopic chain
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I differences for neutron-rich systems not
larger than around the valley of
stability

M. Bender, CEN Bordeaux Gradignan Tensor terms in the Skyrme energy density functional



Deformation energy from a quadrupole constraint I

I deformation modifies the amount of spin saturation that determined the
contribution of the J2 terms discussed for spherical configurations above
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Deformation energy from a quadrupole constraint I

I nuclei become stiffer of softer depending on their spin-saturation
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Deformation energy from a quadrupole constraint II

I nuclei become stiffer of softer depending on their spin-saturation
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Deformation energy from a quadrupole constraint II

I nuclei become stiffer of softer depending on their spin-saturation
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Fission barriers - axial - triaxial - reflection asymmetric
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Intermezzo: local densities and currents I

ρq(r) =
X

k

v
2
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2
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¯

The tensor-kinetic pseudovector density F(r) was intruduced in H. Flocard’s
thesis in 1975, but afterwards forgotten.

back to the functional from the central force back to the functional from the tensor force
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Intermezzo: recoupling of the spin-orbit tensor

The cartesian spin-orbit tensor can be decomposed into a pseudoscalar,
pseudovector and traceless pseudotensor

Jµν(r) = 1
3
δµν J

(0)(r) + 1
2

X
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εµνκ J
(1)
κ (r) + J

(2)
µν (r)

The pseudovector part is the spin-orbit current known from the genuine
spin-orbit force
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Dobaczewski et al. reformulate the density functional as
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back to the functional from the central force back to the functional from the tensor force
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Auxiliary material: Combined central + LS + tensor energy functional

central + LS:
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back to the combined energy functional
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