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Quasi-Spin Algebra
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@ Nucleons interacting with a pairing force:
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@ When the pairing strength is separable (c;; = ¢/ cy):
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@ If we assume that the energy levels are degenerate the
first term is a constant for a given number of pairs:
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Other exactly solvable cases:

@ Quasi-spin limit (all ¢;'s are the same):
b ot
H=-[G>_S§'S;.
i
@ Richardson’s solution:
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@ Gaudin’s model - somewhat different.

A.B. Balantekin

Spectra and Symmetries of Nuclear Pairing

DA




N
Define

§7(0)=>¢'&§" and 5(0)=> ¢S5,
j j
H = —|G|5*(0)5(0).

In the 1970’s Talmi showed that under certain assumptions, a
state of the form

§7(0)0) = > ¢'570), |0): particle vacuum
J

is an eigenstate of a class of Hamiltonians including the one
above. Indeed

8(0)/0) = (GZQ/C/Z) 5%(0)0)
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What about other one-pair states?

< Clz

For example for two levels j; and j», the orthogonal state
G, »
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is also an eigenstate with E=0
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Energy/(—|G|)
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State
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States with N=1 for two shells
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What about other one-pair states?

For example for two levels j; and jo, the orthogonal state

<C/2 S+ C/1 é-l—

, Q, j2)
is also an eigenstate with E=0

Is there a systematic way to derive these states?
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Yes, as showed by Pan, et al. for particle pair states.
Define

A C* A 2 Cj 2

t(x) = 1 _ gt —(x) = S B o o

St(x) = ? — |cj|2xS/ and S (x) ? — |Cj|2xs/

Then eigenstates are of the form
§t(x)8*(y)--- 8 (2)/0)

F. Pan, J.P. Draayer, W.E. Ormand, Phys. Lett. B 422, 1 (1998)
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Can we generalize this result to the cases where the shell is
more than half full?

Yes!

A.B. Balantekin, J.H. de Jesus, and Y. Pehlivan,
nucl-th/0702059
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57(0)5H(ZMy... &1 (zM)0)

is an eigenstate if the following Bethe ansatz equations are
satisfied:
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Pan et al did not note but this is an eigenstate if the shell is at
most half full.
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Similarly
& (xM&+ (M) .. &+ (x\) o)

is an eigenstate with zero energy if the following Bethe ansatz
equations are satisfied:
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Again this is a state if the shell is at most half full.
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What if the available states are more than half full? There are
degeneracies:

No. of Pairs

Energy/(—|G|) | State
1 >l | §7(0))0)
Npmax zj Qj|cj|'2 |0>

|0): particle vacuum

|0): state where all levels are completely filled
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If the shells are more than half full then the state
— (N & (N
5 (Z"M5(4Y)

.5 (zN 1)]O>
is an eigenstate with energy

N—1 2
=-6|X96f -3
k=1 %
if the following Bethe ansatz equations are satisfied
—-Q,/2 1 1
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N N N N
j 1/|Cj|2_zr(n) 25" k=1(k#m) Zr(n) Z/(<)
Here Npyax + 1 — N = number of particle pairs
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Particle-hole degeneracy:

No. of Pairs State

N 510)&+(2My ... &+ (2N ))0)

Npax +1—N | 5 (2"M&-(2M)... & (2")0)
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Energy (MeV)
~

)

5.76 (4.63)

5.30(4.23) 5.30 (=)
4.73 (3.59)

4.16 (3.85) 4.16 (=)

3.16 (2.89) 3.16 (=)

3.00 (3.32) - 3.00 (2.97)
2.11(2.29) 2.11 (2.45)
1.64 (2.05) 1.64 (2.87)

60, . 62, 64 66, .
Ni Ni Ni Ni

theory (experiment)
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Solutions of Bethe Ansatz equations
x™ = ]
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In 1914 Stieltjes showed that the polynomial

N
pn(2) = [](z— 2™
i=1

satisfies the hypergeometric equation
z

(1 Z)pN+[ sz"‘ (Qthz) ]pN+N (N Qh
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Conclusions

@ We showed that the Bethe ansatz technique can be
applied to the nuclear pairing Hamiltonian with separable
pairing strengths and degenerate energy levels in a purely
algebraic fashion.

@ The eigenstates with N pairs of nucleons where
N < Npax/2 and the eigenstates with Nya + 1 — N pairs
of nucleons have the same energy and these states can be
found by solving the same equations of Bethe ansatz
(except for the zero energy states).

@ It may be possible to incorporate non-degenerate energy
levels perturbatively.
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