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Quasi-Spin Algebra

Ŝ+
j =

∑

m>0
(−1)(j−m)a†

j ma†
j −m,

Ŝ−
j =

∑

m>0
(−1)(j−m)aj −maj m

Ŝ0
j =

1
2

∑

m>0

(

a†
j maj m + a†

j −maj −m − 1,
)

Ŝ0
j = N̂j −

1
2Ωj .

Ωj = j + 1
2 = the maximum number of pairs that can occupy the

level j
N̂j =

1
2

∑

m>0

(

a†
j maj m + a†

j −maj −m
)

.

0 < N̂j < Ωj −→
1
2Ωj representation
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Nucleons interacting with a pairing force:

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
cjj ′Ŝ+

j Ŝ−
j ′ .

When the pairing strength is separable (cjj ′ = c∗
j cj ′):

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
c∗

j cj ′Ŝ+
j Ŝ−

j ′ .

If we assume that the energy levels are degenerate the
first term is a constant for a given number of pairs:

Ĥ = −|G|
∑

jj ′
c∗

j cj ′Ŝ+
j Ŝ−

j ′ .
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Other exactly solvable cases:
Quasi-spin limit (all cj ’s are the same):

Ĥ = −|G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

Richardson’s solution:

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

Gaudin’s model - somewhat different.
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Define

Ŝ+(0) =
∑

j
c∗

j Ŝ+
j and Ŝ−(0) =

∑

j
cj Ŝ−

j ,

Ĥ = −|G|Ŝ+(0)Ŝ−(0).

In the 1970’s Talmi showed that under certain assumptions, a
state of the form

Ŝ+(0)|0〉 =
∑

j
c∗

j Ŝ+
j |0〉, |0〉: particle vacuum

is an eigenstate of a class of Hamiltonians including the one
above. Indeed

ĤŜ+(0)|0〉 =



−|G|
∑

j
Ωj |cj |

2



 Ŝ+(0)|0〉
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What about other one-pair states?
For example for two levels j1 and j2, the orthogonal state

( cj2
Ωj1

Ŝ+
j1 −

cj1
Ωj2

Ŝ+
j2

)

|0〉,

is also an eigenstate with E=0.
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Energy/(−|G|) State

0
(

−
cj2
Ωj1

Ŝ+
j1 +

cj1
Ωj2

Ŝ+
j2

)

|0〉

Ωj1 |cj1 |
2 + Ωj1|cj1 |

2
(

c∗
j1Ŝ+

j1 + c∗
j2Ŝ+

j2

)

|0〉

States with N=1 for two shells
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What about other one-pair states?
For example for two levels j1 and j2, the orthogonal state

( cj2
Ωj1

Ŝ+
j1 −

cj1
Ωj2

Ŝ+
j2

)

|0〉,

is also an eigenstate with E=0.
Is there a systematic way to derive these states?
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Yes, as showed by Pan, et al. for particle pair states.
Define

Ŝ+(x) =
∑

j

c∗
j

1 − |cj |2x Ŝ+
j and Ŝ−(x) =

∑

j

cj
1 − |cj |2x Ŝ−

j .

Then eigenstates are of the form

Ŝ+(x)Ŝ+(y) · · · Ŝ+(z)|0〉

F. Pan, J.P. Draayer, W.E. Ormand, Phys. Lett. B 422, 1 (1998)
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Can we generalize this result to the cases where the shell is
more than half full?

Yes!
A.B. Balantekin, J.H. de Jesus, and Y. Pehlivan,
nucl-th/0702059
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Ŝ+(x) =
∑

j

c∗
j

1 − |cj |2x Ŝ+
j and Ŝ−(x) =

∑

j

cj
1 − |cj |2x Ŝ−

j

Introduce the operator

K̂ 0(x) =
∑

j

1
1/|cj |2 − x Ŝ0

j

[Ŝ+(x), Ŝ−(0)] = [Ŝ+(0), Ŝ−(x)] = 2K 0(x)

[K̂ 0(x), Ŝ±(y)] = ±
Ŝ±(x) − Ŝ±(y)

x − y

This is very similar to Gaudin algebra!
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Ŝ+(0)Ŝ+(z(N)
1 ) . . . Ŝ+(z(N)

N−1)|0〉
is an eigenstate if the following Bethe ansatz equations are
satisfied:

∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k

m = 1, 2, . . . N−1.

EN = −|G|





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





Pan et al did not note but this is an eigenstate if the shell is at
most half full.
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Similarly
Ŝ+(x (N)

1 )Ŝ+(x (N)
2 ) . . . Ŝ+(x (N)

N )|0〉
is an eigenstate with zero energy if the following Bethe ansatz
equations are satisfied:

∑

j

−Ωj/2
1/|cj |2 − x (N)

m
=

N
∑

k=1(k 6=m)

1
x (N)

m − x (N)
k

for every m = 1, 2, . . . , N

Again this is a state if the shell is at most half full.
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What if the available states are more than half full? There are
degeneracies:

No. of Pairs Energy/(−|G|) State

1
∑

j Ωj |cj |
2 Ŝ+(0)|0〉

Nmax
∑

j Ωj |cj |
2 |0̄〉

|0〉: particle vacuum
|0̄〉: state where all levels are completely filled
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If the shells are more than half full then the state

Ŝ−(z(N)
1 )Ŝ−(z(N)

2 ) . . . Ŝ−(z(N)
N−1)|0̄〉

is an eigenstate with energy

E = −G





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





if the following Bethe ansatz equations are satisfied

∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k

Here Nmax + 1 − N = number of particle pairs

A.B. Balantekin Spectra and Symmetries of Nuclear Pairing



Particle-hole degeneracy:

No. of Pairs State

N Ŝ+(0)Ŝ+(z(N)
1 ) . . . Ŝ+(z(N)

N−1)|0〉

Nmax + 1 − N Ŝ−(z(N)
1 )Ŝ−(z(N)

2 ) . . . Ŝ−(z(N)
N−1)|0̄〉

E = −G





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k
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Results for the sd shell with 0d5/2, 0d3/2, and 1s1/2
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2.94 (2.94)

2.11 (2.29)

3.00 (3.32)

4.73 (3.59)

1.64 (2.05)

3.16 (2.89)

4.16 (3.85)

5.30 (4.23)

5.76 (4.63)

1.64 (2.87)

3.16 (----)

4.16 (----)

5.30 (----)
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theory (experiment)
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Solutions of Bethe Ansatz equations

x (N)
i =

1
|cj2 |

2 + η
(N)
i

( 1
|cj1 |

2 −
1

|cj2 |
2

)

N
∑

k=1(k 6=i)

1
η

(N)
i − η

(N)
k

−
Ωj2/2
η

(N)
i

+
Ωj1/2

1 − η
(N)
i

= 0

In 1914 Stieltjes showed that the polynomial

pN(z) =

N
∏

i=1
(z − η

(N)
i )

satisfies the hypergeometric equation

z(1−z)p′′
N+

[

−Ωj2 +
(

Ωj1Ωj2
)

z
]

p′
N+N

(

N − Ωj1 − Ωj2 − 1
)

pN = 0
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Conclusions
We showed that the Bethe ansatz technique can be
applied to the nuclear pairing Hamiltonian with separable
pairing strengths and degenerate energy levels in a purely
algebraic fashion.
The eigenstates with N pairs of nucleons where
N ≤ Nmax/2 and the eigenstates with Nmax + 1 − N pairs
of nucleons have the same energy and these states can be
found by solving the same equations of Bethe ansatz
(except for the zero energy states).
It may be possible to incorporate non-degenerate energy
levels perturbatively.
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