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Modification of shell structure near n drip line

Weak L.L
Lack of intruders Questions:

-What is the shell structure
   near neutron drip line?

- How to experimentally
  determine the new magic
  numbers?

-How to distinguish
  the conventional
  from drip-line physics?

(single particle energies(single particle energies
move around due tomove around due to
many many factors, unrelatedfactors, unrelated
to drip line physics!)to drip line physics!)



Spacings of ! p-f-h & 

s-d levels at 132Sn
(Ref. is neutron 3p)
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 L.L  is STRONGER 
in exp. than in Skyrme 

If we observe discrepancies
between experiments
and Skyrme calculations 
near 132Sn, it cannot be due
to a weak  L.L  in theory.

We should look for the 
answer elsewhere.

N=82



dd5/25/2  is too high in Shell models  is too high in Shell models
A. Brown artificially lowers the energy of d5/2 by 300 keV to fit data;
Justification: Neutron skin

h11/2

Puzzle: sharpPuzzle: sharp
drop in drop in ππdd  5/25/2  

N=82N=82



Signatures of large shell gaps & magic numbersSignatures of large shell gaps & magic numbers

CombinationsCombinations  ofof::
• Kinks in 1n and 2n separation energies
• Large E(2+) and small B(E2) -- signature of rigid spheres
• Small σ(n,γ)  (peaks in element abundances)
• Kinks in single-particle energies
• Kinks in g-factors
• Kinks in radii

Ozawa et al., Phys. Rev. Lett. 84 (2000) 5493

E(2+)

B(E2)



Measurements to probe shell structure far from stabilityMeasurements to probe shell structure far from stability
• Gross properties:

• Masses (binding energies)
• Half lives
• Radii
• Level densities
• σ(n,γ) -- related to r-process abundances, [use (d,p)]

• Single-particle properties:
• Energy, spin, parity, spectroscopic factors, g-factors
• Parallel momenta in knock out reactions (fast beams)

• Collective properties:
• Low-lying energy spectra (e.g., 2+ states, 4+)
• B(E2) & electromagnetic moments
• Higher spin states (band structures)
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Evolution of shell structure: Weakening of shell gaps manifest in S2n & S2p



Widening of Z = 82 gap with increasing NWidening of Z = 82 gap with increasing N
or, shrinkage of Z=82 with proton-richor, shrinkage of Z=82 with proton-rich

~~δδSS2p2p

Z=82Z=82



N=126N=126

Z=82Z=82

Z= 82 and N=126 are robust shell gaps



Z=50Z=50

N=82N=82

Z=50 is robust and increases with N



Z=28Z=28

Z=50Z=50

N=50N=50

Z=28 and N=50 gaps are respectable.
A small Z=40 gap also appears

Z=40Z=40



N=28N=28

Z=28Z=28

Note no N=40 gap

N=28 gap is less pronounced than Z=28N=28 gap is less pronounced than Z=28

Z=20?Z=20?

Z=14Z=14



Weak N=20
above Ca

Z=8 pronounced at higher NZ=8 pronounced at higher N

Light Nuclei:Light Nuclei:
Shell structure? Shell structure? What shell structure?What shell structure?

N=8N=8
N=16N=16



Some observations regarding spherical shell gapsSome observations regarding spherical shell gaps

Light Nuclei (below A~40)Light Nuclei (below A~40)

- N, Z = 8, 20 gaps are very weak; thus the concept of shell
model calculations with a “doubly-magic core” is not very
rigorous

- Monopole migration and other interactions produce fast and
large changes in s.p. energies. These are the underlying causes

of “Island of inversion”, “melting of N=20 shell gap”, “emergence

of N=16 gap”, etc.

- Should be careful not to relate all all of these phenomena to drip-line
physics



Heavy NucleiHeavy Nuclei

- Pronounced shell gaps start to appear  around N, Z = 28

- Gaps at Z= 28 (f7-p3), 50 (g9-d5), and 82 (h11-f7) increase with N

- The N= 28, 50, 82, 126 gaps increase in more n-rich nuclei

Thus, the robustness of doubly-magic nuclei increases Thus, the robustness of doubly-magic nuclei increases 
with N & Z:with N & Z:

            208208Pb > Pb > 132132Sn > Sn > 100100Sn > Sn > 7878Ni > Ni > 5656Ni > Ni > 4848Ca > Ca > 4040 Ca Ca

Hence, we need to travel farther from stabilitytravel farther from stability in heavier 

nuclei before we encounter exotic phenomena!



Can we use single-particle (s.p.) energies to infer changes in shellCan we use single-particle (s.p.) energies to infer changes in shell
structure due to diffused potentials?structure due to diffused potentials?

Procedural question: How to follow evolution of s.p. energies?Procedural question: How to follow evolution of s.p. energies?
  1. Follow n-orbitals (at constant Z) in semi-magic isotopes? e.g., odd Ni
      but they move with Fermi surface & are affected by n-n interactions

  2. Follow n-orbitals (at constant N) in odd-N isotones? e.g., N=51, 83
      they are affected by strong p-n interaction (so called monopole shift)

  3. Follow p-orbitals (at constant Z) in odd-Z isotopes? e.g., Z=29, 51
      but they are affected by strong p-n interaction (monopole shift)
      Furthermore, diffused neutron matter is supposed to affect
      mostly neutron orbitals!

One more problem:
Low-lying levels are usually impure (phonon admixtures, configuration
mixing)



Properties of Low-Lying levelsProperties of Low-Lying levels  
as probes of shell structureas probes of shell structure

- Energies of 2+ and 4+ may be obtained through decay
studies or Coulex.

- B(E2), Q, and g-factors  are best studied through Coulex.



Coulomb excitation: Two complementary methodsCoulomb excitation: Two complementary methods
Fast Beams at intermediate energies:
• Intermediate energies & thick targets
  (hundreds of mg/cm2)
• One step process; excites levels
  connected to the ground state by an E2
• Are advantageous when E(2) is high; e.g.
  in light nuclei and near magic numbers

Slow beams near Coulomb barrier:
• Use thin targets (one to few mg/cm2)
• Less problem with Doppler broadening
• Multi-step process:
    -  4+ & high-spin states
    - Quadrupole  moment
• Can use high-Z targets to increase σ

• The main advantage of fast beams
is higher target thickness; thus the
required beam intensities are less
by a factor of ~10-100, depending on
E(2) or Z of target for ISOL beam.

• The main advantage of slow beams:
Multi-step Coulex.



Energies of the first 2+

Shell gaps give rise to discontinuities in E(2+), which become more
pronounced at larger N 
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- Surprising low B(E2) for 136Te in the first exp’t. This is contrary to Grodzins scaling
- A new measurement indicates 50% higher B(E2), in excellent agreement with
  Shell Model calculations (Naples & Tokyo)
- Small B(E2) in 136Te attributed to dominance of neutron in the w.f. 

Grodzins-Raman Scaling:
Product of B(E2; 0 -> 2) . E(2+)

~ [2.6 * Z2/ A2/3]

B(E2)B(E2)  usually dip at magic numbersusually dip at magic numbers



E(2) and B(E2)  are correlated and, together,  reflect the underlying
shell structure.

For example, moment of inertia is  ~ Q for spherical, and
~ Q2 for deformed nuclei.

However, the absolute value of E(2) is inversely proportional to J2

M.o.I and, hence, is strongly affected by variations in pairing.

A preliminary study indicates that these correlations may reveal the
deformed shell gaps.
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• Grodzins’ scaled E(2+) . B(E2) products for isotopic chains are not constant,
  but steadily decrease with increasing N
• The trend persists across magic numbers & is not strongly correlated
  with shapes (see Ba isotopes)
• Hierarchy and steeper decrease in E(2Hierarchy and steeper decrease in E(2++) . B(E2) signal approach to magic ) . B(E2) signal approach to magic ππ

Quenching of Quadrupole Strength of 2Quenching of Quadrupole Strength of 2+ + with Increasing with Increasing NN



• Decrease in E(2+) x B(E2) is not usually correlated with shapes
• This indicates that first 2+ exhausts a smaller fraction of En. Wt. Sum Rule in
  n-rich nuclei -- Weaker n-pairing increases n-contribution to the w.f. of 2+

• Weaker n-pairing also increases J2 M.o.I and lowers 2+

• Division by Sn seems to compensates for this, thus providing a better tool to
  predict B(E2) from known E(2+) values

Ba isotopes: Trends of E2, B(E2), & scaled E2.BE2
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Deformed

Shell   model

Energy ratio R4=E(4)/E(2) reflects shell gaps
- At and near magic numbers: R4-2 < 0  (spherical shell model)
- Near mid-shell: R4-2 climb to 1.3 (onset of deformation)



All negative (R4-2) are located at semi-magic nucleiAll negative (R4-2) are located at semi-magic nuclei
or very close toor very close to  themthem



Deformed

Shell   model

Hg

Pt

YbXe
N=88

E(4) -E(4) -    E(2) - B(E2) CorrelationsE(2) - B(E2) Correlations

E(4)/ E(2) Vs. B(E2)E(4)/ E(2) Vs. B(E2)
plots revealplots reveal
shell & sub-shellshell & sub-shell
structures forstructures for
BOTH    BOTH    N & ZN & Z
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Shapes & Collectivity:Shapes & Collectivity: 
Sensitive tests of models in transitional nucleiSensitive tests of models in transitional nuclei

Triaxiality is reflected in simple quantities:
- Relative positions of 41 and 22
- Branching ratios of (22 -> 21)/(22 -> 0)
- Quadrupole moments

Triaxiality usually occurs at the “North-East” quadrant of the magic box

Padilla et al.

E. Padilla et al.



  g-factorsg-factors
- An excellent probe of s.p. states & magic numbers
  ((e.g.,e.g.,  they show a distinct discontinuity at they show a distinct discontinuity at magic numbers)magic numbers)

--  Two techniques: TF, RIV measurements using Coulomb excitationTwo techniques: TF, RIV measurements using Coulomb excitation
 (Stable Te &   (Stable Te &  132,136132,136 Te have been studied with RIV) Te have been studied with RIV)

- - A sensitive test of models  -- -- especially when combined with B(E2)especially when combined with B(E2)

Apply to odd-A,Apply to odd-A,  & 2& 2++, 4, 4++ to probe  to probe p-n p-n components of w.f nearcomponents of w.f near  magic #magic #



SummarySummary

-We should utilize a  wide variety of observable to study
the evolution of shell structure and changes in magic 
numbers

- It is highly desirable to have model-independent signatures

-  Ground-state masses (Qα) provide the first hints

- Further evidence can come from the energies and B(E2)
values of the low-lying 2+ and 4+ states

- In particular R4-B(E2) correlations provide clear signal
about positions of N & Z relative to the closest gaps



   Coulex of 136Te @ HRIBFReach of Coulex Studies with RIBsReach of Coulex Studies with RIBs
Illustrative cases using a Illustrative cases using a Ti targetTi target

Right: Right: 136136Te & Te & 136136Ba @ HRIBFBa @ HRIBF

Below: Below: Ba Ba beams @ a Hi-Power facilitybeams @ a Hi-Power facility

Te (4+)

Te (2+)

Ba (2+)

B(E2) 
known for
N= 66 - 90

Octupole




