
Computational Methods

D. J. Dean
Physics Division, Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6373 USA

(Dated: March 29, 2005)

Course on computational methods applied to various physical problems.

I. INTRODUCTION

The science, practice, and yes, even art, of scientific computing should thrill the soul. Scientifically, one endeavors to
gain insight into problems that would be difficult if not impossible to attack otherwise. Scientific computing requires
mapping complex mathematical equations onto an algorithmic framework that can then be placed into a computer.
For physical problems this often requires some form of descretization of parameters (such as dimension or time) that
are continuous in the real world. Such descretizations introduce unavoidable errors that must be accounted for when
one discusses results of a particular calculation. The practice of computing requires one to write efficient code, make
it run on a computer, and also to understand and analyse results coming from the code. One must critically ask
whether a particular result makes any physical sense. Indeed, many rather foolish claims have been made by people
who thought their codes were working, but who did not bother to make sure the science coming out the other side
was physically feasible. Finally, scientific computing contains an element of artistic interpretation. There is no single
best way to set up a complicated computational code, and even though good computational practices exist, one will
find varieties of ways to generate an excellent code that produces correct physics.

Physics 573 will challenge you and reward you for a job well done. We will do some massive amount of heavy lifting
in this class with the purpose of walking through several different classes of physical and computational problems from
equations to implementation. Our goal is that you will become familiar with algorithms and ideas of computational
physics, and that you will gain some physical insight to a few problems that appear in nature as well.

II. COURSE OUTLINE

Here are some simple points about Physics 573. First, we will meet on T/R from 8:10-9:25. The course will be
both interactive (using the computers) and lecture oriented. My office is in the tower: Ayers 226N. I’ll be there on
Thursdays for much of the day.

We will cover much of the following material.

• We will begin with some differential equations. How does one take a derivative of a function on a computer?
We will do three different types of problems during this stage. We will look at a one-dimensional heat-equation,
at the one-body Schrodinger equation, and finally at Hartree-Fock equations. We will solve some frequently
encountered problems (computationally) along the way. We will also discuss density functional theory and its
applications.

The Heat equation and the Schrodinger equation contains a spacial derivative ∇2 so we will learn how to
deal with derivatives on a numerical grid. We will learn how to solve Schrodinger’s equation for a given radial
potential. We will then introduce the idea of time-dependence into the problem, and try to solve a linear collision
problem of two simple blobs of matter. Thus, you will learn how to set up a boundary value problem (BVP)
by solving the static Schrodinger equation, and an initial value problem (IVP) by solving the time-dependent
Schrodinger equation. The one-body Schrodinger equation is given by H(r)ψ(r) = Eψ(r).

We will then use what we learned about the one-body schrodinger equation to solve a very simple problem in
Density Functional Theory. DFT adds a level of complication to solutions of the Schrodinger equation since
the Hamiltonian depends on the density of matter. But the density is given by the square of the one-body
wave-functions. Therefore, the solution must be obtained by iteration. In this case, one solves H(ψ(r), r)ψ(r) =
Eψ(r). We will learn how to solve this type of equation and apply it to a simple atom.

• We will move to Monte Carlo simulations in various models including the Heisenberg spin-chain models, the
Ising model, and the Hubbard model. We will discuss methods of investigating phase transitions within these
models.

2

• We will discuss eigenvalue problems and their solutions using Krylov techniques. These powerful techniques
allow one to diagonalize huge matrices and also to solve other problems such as Boltzman transport. Believe
it or not, Lattice QCD solvers also employ these types of techniques to invert the fermion propagators in their
problems.

Your grading will be based on several home-work assignments through out the semester and a final exam. The
final exam will actually be a computational project for which you will have to write a report and orally present your
results during finals week. More on this later.

III. GETTING STARTED

We need to go through some simple linux/unix commands and some simple Windows commands.
You will each have an account on the machine butterfly.phys.utk.edu. You must use ssh (secure shell connections)

and scp (secure copy) to communicate with the machine. I expect that no work outside our assigned class work will
occur on this platform. Indeed, if I see abuses, that will be taken into account in your grading.

A. Accessing Monte

You have to do some simple things to get to Monte.
If you are on a windows machine, you need first to start cygwin. This is a terminal emulator. If your cygwin has

the XFree86 package, the next step is to issue the command “startx &” which will start an X-terminal session. If
startx does not work, then you need to simply type ssh -l ¡user name¿ butterfly.phys.utk.edu. If startx does work,
then you type

ssh -l ¡user name¿ -X butterfly.phys.utk.edu
Numerous packages exist on butterfly. For example, xmgrace is a simple graphics package, acroread will read pdf

files, ghostview reads post-script files, tex and latex can be used to generate text files. Editing can be performed
either with vi or with emacs. The fortran compiler is lf95.

B. Simple Linux commands

Here are some simple commands that will be useful on butterfly.

Command description
cp file1 file2 copies file1 to file2
mv file1 file2 moves file1 to file2
cd directory changes directory
cd ../ move up one directory
pwd shows your path name (your directory tree)
make runs makefiles
man command will tell you about a command
rm file removes a file
mkdir directory makes a directory
ls lists files in a directory

TABLE I: Some useful commands for linux

You will find fortran userguides for the lf95 compiler in /usr/local/lf9561/manuals (pdf files).

C. Some words about Fortran

Fortran is a computer language and the one with which I am most familiar. While C and C++ can be used in this
class, if you want debugging help, you are going to have to learn Fortran. The example programs that we will work
with are written in f90/95, so they are up to date in terms of the language syntax. These programs can be translated
to C or C++ if you want to go to that effort. However, keep in mind, that this is not a programming course; rather
it is an introductory course in scientific computing.

3

Software type command to start
Graphics xmgrace
figure making xfig
pdf file reader acroread
ascii editors vi, emacs
Fortran compiler lf95
C compiler gcc
tex,latex document maker tex, latex
postscript viewer ghostview

TABLE II: Some useful software on butterfly.

Now, you need to quickly get familiar with the Fortran language. Your book, Fortran 90/95 explained, by Metcalf
and Reid, should help you tremendously in this respect. The first few example programs that we will tackle together
should give you some proficiency in using Fortran.

D. Some words about Windows

Two varieties of machines exist in our class room. The newer Dells have Windows-2000 installed. This o/s is stable
and useful. On the 5 Dells I got X-Free86 going, so that they all can easily connect to butterfly with no problems.
The older machines are running Windows-98, a less stable operating system, and less useful. I have not yet been able
to get X-Free86 on to these machines, so in the meantime, you will need to share. The windows machines typically
have microsoft-word and power-point installed. They also have some graphics packages.

IV. DERIVATIVES: SOLVING THE HEAT AND SCHRODINGER EQUATIONS

A. General ideas about derivatives

Let’s start with some basics concerning differentiation. Given a function

f(x) ∈ CN , (1)

we need to first, descretize it, and then find a finite differential representation for the descretization. We first set up
a numerical grid for the spacial variable, x such that

x→ xi , i = 0, 1, 2, · · ·N , (2)

for a uniform grid, we choose a ∆x (a grid spacing) that allows us to write

xi = xmin + i∆x . (3)

On the computer, we will allocate an array x(0 : N) that will carry the values of x on our grid. The function f(x)
then maps directly onto the numerical grid

f(x)→ f(xi) , xmin ≤ xi ≤ N∆x+ xmin (4)

Shown in Fig. 1 is a graphical representation of this simple descretization. Note that the function f(xα) will often
be written as fα where the dependence on x is understood. On the computer, we once again will allocate an array
f(0 : N) that will carry the values of f on our grid.

Of course, we are assuming here a uniform grid spacing, ∆x. In many applications the grid does not need to be
uniform. We will touch on this point later.

We now have a function f(xα) = fα. What are its derivatives? Mathematically, the derivative of a function is given
by the limit

df

dx
= lim

ε→0

f(x+ ε)− f(x)
ε

(5)

4

x5xmin x1 x2 x3 x4 x6

f(x4) f(x5) f(x6)

f4 f5

f(x3)f(x2)f(x1)f(x0)

f2 f6f3f1f0

FIG. 1: Discretization of the spacial variable x and the function f(x)

On a numerical grid, we may use a forward-difference representation of the derivative

∆f

∆x
=
f(xn+1 − f(xn)

∆x
. (6)

We could also use a different formulation, known as a centered difference

∆f

∆x
=
f(xn+1)− f(xn−1)

2∆x
. (7)

The difference between Eq. 6 and Eq. 7 is that the derivatives themselves are defined at different positions on the
numerical grid. Eq. 6 defines the derivative at the mid-point xn+1/2 while Eq. 7 places the derivative at the point xn.
Another important difference is that the accuracy of Eq. 7 is greater. We will discuss this point later.

Now, we can move to the second derivative. A good place to start is to use a centered difference defined at the half
points of the grid. Then

∆f

∆x
=
f(xn+1/2)− f(xn−1/2)

∆x
. (8)

We can finite difference this formula to obtain a numerical representation for the second derivative:

d2f

dx2
→ ∆2f

∆x2
=

[f(xn+1)− f(xn)]− [f(xn)− f(xn+1)]

(∆x)2
=
f(xn+1 − 2f(xn) + f(xn−1)

(∆x)2
(9)

B. Error Estimates

One must learn the important skill of understanding numerical errors as one develops computational programs. In
this section we will consider the error estimates associated with our derivation of the first derivative.

We are given a function

fn = f(xn) , xn = (∆x)n , for n = 0,±1,±2, · · · . (10)

A picture of this function, and its discretization is given in Fig. 2. Let us expand the function f(x) as a Taylor series
around f0.

f(x) = f0 + xf ′ +
x2

2
f ′′ +

x3

3!
f ′′′ + · · · , (11)

where we evaluate all derivatives at x = 0. We can then write down expressions for f+1 and f−1. They are

f+1 = f0 + (∆x)f ′ +
(∆x)2

2!
f ′′ +

(∆x)3

3!
f ′′′ +O((∆x)4)

f−1 = f0 − (∆x)f ′ +
(∆x)2

2!
f ′′ − (∆x)3

3!
f ′′′ +O((∆x)4)

We subtract these equations to obtain

f+1 − f−1 = 2(∆x)f ′ +
2(∆x)3

6
f ′′′ +O((∆x)4) , (12)

from which we obtain an expression for the first derivative:

f ′ =
f+1 − f−1

2(∆x)
− (∆x)

6
+O((∆x)4) . (13)

5

f0 f1 f2 f3f−1f−2f−3

x3x2x1x0x−1x−2x−3

FIG. 2: Discretization of the function f(x) on the lattice at various lattice points.

So as (∆x)→ 0 the error in f ′ behaves like O((∆x)2). If f(x) = x2 (a second degree polynomial), then Eq. 13 would
be exact in the interval.

A similar derivation for the forward (or backward) difference formula given in Eq. 6 yields

f ′ =
f1 − f0
∆x

+O((∆x)) , (14)

which is much less accurate (by a power of (∆x)).
Now, one may be tempted to push (∆x) to extremely small values, in order to obtain better numerical representa-

tions of a derivative. But remember, computers are not infinite precision machines, and one can make (∆x) too small.
As an example, let us build a fictional computer that carries only six significant digits, and let us choose (∆x) = 10−6.
For a simple function (where the angular values are in radians), we would find that

f1 = sin(1.000001) = 0.841472

f−1 = sin(0.999999) = 0.841470

f1 − f−1 = 0.000002 ,

and therefore our numerical derivative would be f ′ = 1.0. This is obviously not very good considering that the
derivative of sin(x) with respect to x is cos(x) and that that cos(1) = 0.5403023. Let us suppose our fictional
computer carries 10 significant digits. Then

f1 = sin(1.000001) = 0.8414715251

f−1 = sin(0.999999) = 0.8414704445

f ′ = 0.540300 ,

Clearly, the derivative behaves more precisely in this case.
This leads to an important conclusion. Numerical differentiation and integration are intrinsically unstable processes

on a computer as there is no numerically well defined limit as (∆x)→ 0, and so both these processes must be carried
out with caution and awareness of the underlying computational limitations of a given hardware system.

C. The Heat Equation

Heat equations describe the diffusion of heat in a material. Let U(~x, t) denote the temperature at a point ~x within
a solid at time t. If we specify only one-dimensional flow, the heat equation is then given by

∂

∂t
U(x, t) = ±k ∂

2

∂x2
U(x, t) , (15)

where k is the thermall diffusivity of the material. This is a simple form of the equation of diffusion and may be
extended to multi-dimensional objects. In a three-dimensional object the equation becomes Ut = k(Uxx +Uyy +Uzz.
Details on the equation and its analytic solutions for certain problems can be found in Churchill’s Operational
Mathematics.

We would like to solve a simple diffusion problem. Let the temperature of the face of a semi-infinite solid x ≥ 0 be
a prescribed function F (t) of time. If the initial temperature is zero, the temperature function U(x, t) is the solution
of the boundary value problem

Ut(x, t) = kUxx(x, t) (x > 0, t > 0) (16)

U(x, 0) = 0 (x > 0) (17)

U(0, t) = F (t) , lim
x→∞

U(x, t) = 0 (t > 0) (18)

6

This problem has analytic solutions, but let’s work on it with our knowledge of derivatives.
The diffusion equation is first order in time and second order in space. Let us define some grid points:

xi =
i

Imax
L fori = 0, 1, 2, · · · , Imax (19)

tn =
n

Nmax
T forn = 0, 1, 2, · · · , N (20)

where the our one dimensional bar is of length L and we are interested in time propagation up to time T . In a discrete
form, it is given by

U(xi, tn+1)− U(xi, tn)

∆t
= k

{

U(xi+1, tn)− 2U(xi, tn) + U(xi−1, tn)

(∆x)2

}

. (21)

This equation can be rearranged simply so that we can propagate in time

U(xi, tn+1) =
k∆t

(∆x)2
[U(xi+1, tn)− 2U(xi, tn) + U(xi−1, tn)] + U(xi, tn) . (22)

The flux through a given point (at the surface) is given by

Φ(t) = −KUx(0, t) , (23)

while the total amount of heat that has been absorbed by the solid through a unit area of the face at time t is

Q(t) =

∫ t

0

Φ(τ)dτ . (24)

You will find a program in the directory
/home/dean/class 573/chapter I/programs/heat eqn/heat eqn.f90 that begins to solve this problem. You also need
the input file, heat.input from the same directory.

• You want to run the program with the input you have and see what kind of output you obtain. Use xmgrace to
plot the flux at time t as a function of time.

• Now, keeping the length of the rod fixed, change ∆x to see whether your results are numerically stable. You can
do this by changing both the number of points N , the first number in the input, and ∆x, the second number.
Let’s run the four cases, N = 25, ∆x = 0.4, N = 50, ∆x = 0.2, N = 100, ∆x = 0.1, and N = 200, ∆x = 0.05.
What can you say about convergence as you increase the number of grid points while keeping ∆t a constant?

• Make a plot of the heat flux through the face of the solid as a function of time and repeat the same convergence
studies as you did in the previous part of the exercise. The heat flux is given by Φ(t) = −KUx(0, t). It is already
coded in the program.

• Now, modify your program such that the temperature on the face of the solid, governed by the function F (t), is
a sine wave with frequency ω (your driving function is then F (t) = sin(ωt)). For N = 100 and ∆x = 0.1 make
plots of Q(t) when ω = 0.5, 1.0, 2.0. At a fixed point, say at x20, make a plot of the temperature as a function
of time for the different values of ω. The temperature is going towards a constant value. What is it (you may
have to run longer times to answer this one)?

D. Stability analysis

While the heat equation studied above yields results, you may have found that for particular choices of k, or for
various choices of ∆x, the algorithm mentioned abouve becomes unstable. This is certainly the case. Indeed, if we use
Eq. 22 for negative k, we will find automatically that the algorithm fails almost immediately. In order to understand
this, we need to perform a von Neumann stability analysis of the difference equation.

In von Neumann analysis we assume that the coefficeints of the difference equations vary slowly so that they can
be taken as constants. Then the independent solutions of the difference equations will all have the form

unj = ξneiκj∆x , (25)

7

where κ is a real spatial wave number that can have any value. ξ = ξ(κ) is a complex number that depends on κ. The
time dependence of a single eigenmode is nothing more than successive powers of the complex number ξ. Therefore,
the difference equations will be unstable and have exponentially growing modes if | ξ(κ) |> 1 for some κ. The number
ξ is called the amplification factor at a given wave number k. We therefore want to simply substitute Eq. 25 back
into our difference equations. For forward-time, centered-difference second derivative equation like our heat equation,
this yields

ξ =

(

1− 2k∆t

(∆x)2

)

− 2k∆t

(∆x)2
cos (κ∆x) (26)

for which | ξ |< 1 for certain choices of 2k∆t
(∆x)2 . This is very typical of diffusion equations: stable solutions require good

(and not independent) choices of ∆t and ∆x.

E. Simple wave propagation

Let us consider another differential equation: an advective equation such that

∂u

∂t
= −v ∂u

∂x
, (27)

where u = u(x, t) and v is a constant. This is a fairly specific example of the general flux-conservation equation. The
equation is called advective because the quantity u is transported by a fluid flow with velocity v.

Now, we can discretize this equation in exactly the same manner as we did for the heat equation. We obtain

un+1
j − unj

∆t
= −v

(

unj+1 − unj−1

2∆x

)

(28)

and we have an easy algorithm and an easy derivation (taking the forward difference in time, and the centered
difference in space : FTCD) but that fails completely! If you perform a von Neumann stability analysis on this
equation you will immediately find that

ξ(κ) = 1− iv∆t
∆x

sin(κ∆x) (29)

which is > 1 for all choices of κ. Thus, the FTCS algorithm is unconditionally unstable. It will never work.
It turns out that this can be easily cured by allowing the simple substitution

unj →
1

2

(

unj+1 + unj−1

)

(30)

which turns Eqn. 28 into

un+1
j =

1

2

(

unj+1 + unj−1

)

− v∆t

2∆x

(

unj+1 − unj−1

)

. (31)

In this case, the amplification factor becomes

ξ = cos k∆x− i v∆t
∆x

sin k∆x; , (32)

for which the stability condition | ξ |2≤ 1 gives the requirement

| v | ∆t
∆x

≤ 1 . (33)

This is the very famous Courant-Freidrichs-Lewy stability criterion; it is usually referred to as the Courant condition.
Figure 3 will give us an intuitive feel for what the condition means. The quantity un+1

j in Eq. 31 is computed from
information at points j − 1 and j + 1 at time n. In other words, xj−1 and xj+1 are teh boundaries of the spatial

region that is allowed to communicate information to un+1
j . Now, in the continuum wave equation, information

actually propagates at a velocity, v; therefore, if the point un+1
j is outside of the shaded region in Fig. 3, then it

8

dt

dx
dx

dtt

x

FIG. 3: Illustration of the Courant condition. In the left panel, the PDE needs more information than is available from the
discretization, while in the right panel, the Courant condition is satisfied.

requires information from points more distant than the differencing scheme allows. Lack of information gives rise to
an instability. Thus, ∆t cannot be too large.

This interesting result and the surprisingly simple fix of a seemingly lost cause (for the FTCS approach), should
indicate to you that numerics is both a science and an art. Differencing continuum equations for computations is
sometimes not so straightforward.

Now, what have we done to the physics by this substitution? Let us rewrite the Lax scheme so that it matches our
original FTCS approach (Eq. 28). The equation becomes

un+1
j − unj

∆t
= −v

unj+1 − unj−1

2∆x
+

1

2

(

unj+1 − 2ujn + unj−1

∆t

)

. (34)

This equation is exactly the FTCS representation of the equation

∂u

∂t
= −v ∂u

∂x
+

(∆x)2

2∆t
∇2u . (35)

This last term is essentially a diffusion term, or a dissipative term (from Navier-Stokes equations). The Lax scheme
therefore employs numerical dissapation in order to obtain stability.

Now, you may ask, we had a spurious increase in wave amplification before Lax, and now the Lax scheme produces
a spurious decrease. Which is better, or are both bad? The spurious decrease is actually much better since we want
to study accurately scales that will encompass many grid points, so that they have k∆x << 1. For these scales, the
amplification factor will be nearly 1 in both the stable and unstable algorithms. However, for the unstable scheme
short scales with k∆x ≈ 1, which we are not interested in, will blow up and swamp the interesting part of the
solution. Much better to have a stable schem in which these short wave lengths die away innocuously. Both schems
are inaccurate for short wavelengths, but the inaccuracy is tolerable when the scheme is stable.

F. Grid representation of derivatives

We want to generate an efficient way to obtain information on derivatives in a computational setting. One very
convenient way is to store the matrix operator. Let us take, for example, the second derivative for several points in
the x direction.

f ′′(x2) =
f(x1)− 2f(x2) + f(x3)

(∆x)2

f ′′(x3) =
f(x2)− 2f(x3) + f(x4)

(∆x)2

f ′′(x4) =
f(x3)− 2f(x4) + f(x5)

(∆x)2
. (36)

One should immediately see that we can define f ′′α and fα as vectors and the derivative matrix as coefficients, −2
being on the diagonal, and 1 on the lower and upper off diagonal terms. This generates the following equation in

9

vector-matrix notation:

f ′′1
f ′′2
f ′′3
f ′′4
f ′′5
f ′′6

=
1

(∆x)2

−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2

f1
f2
f3
f4
f5
f6

(37)

In this simple example, I implemented periodic boundary conditions on the second derivative. This means that the
function repeats itself at the boundary. You can see this since the element ’1’ in the upper-right and lower-left corner
of the matrix require that the derivative is defined as

f ′′1 =
−2f1 + f2 + f6

(∆x)2

f ′′6 =
f1 + f5 − 2f6

(∆x)2
(38)

Comparing Eqs. 38 with Eqns. 36 we see imediately that the assumption we have made is that the function itself
repeats, requiring that f0 = f6, and f7 = f1. This allows us to set the representation of the second derivative matrix
accordingly.

One may also represent the first derivative matrix in a similar way. Using centered differencing from Eq. 7, we
obtain the following representation

f ′1
f ′2
f ′3
f ′4
f ′5
f ′6

=
1

2(∆x)

0 1 0 0 0 −1
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
1 0 0 0 −1 0

f1
f2
f3
f4
f5
f6

. (39)

Once again we employ periodic boundary conditions on the function.

Try it out

Write a small code that will allow you to take simple second derivatives with periodic boundary conditions. Test
your code on a function for which you know the results. Let’s try a Gaussian; f(x) = exp(−x2) whose first derivative
is f ′(x) = −2x exp(−x2) and second derivative is f ′′(x) = −2 exp(−x2)− 4x2exp(−x2).

G. Radial Schrodinger Equation

We are now in a position to solve the Schrodinger equation. We will try it for a simple radial potential and an
angular momentum state l = 0. Let m = h̄ = 1. The Schrodinger equation then becomes

[

−1

2

d2

dr2
+ V (r)

]

ψn(r) = Enψn(r) (40)

This is a standard eigenvalue problem. We are going to solve it as a matrix-vector problem. The second-derivative
(in r) will require us to put the problem on a mesh. V (r) is diagonal on the mesh. Let’s take a simple potential,
the Morse potential, for which V (r) = 25 {exp [−4(r − 3)]− 2 exp [−2(r − 3)]}. The first question to ask concerns the
boundary values of the wave function, ψ. The equation includes a second derivative, so there should be two boundary
conditions. Indeed, they are

ψn(r) → 0 r → 0 (41)

ψn(r) → 0 r〈rmax (42)

The wavefunction at large r actually approximates C exp(−kr). For this problem there is also an analytic solution,
namely the energy eigenvalues are

En = −
[

5−
√
2

(

n+
1

2

)]2

for n = 0, 1, 2, 3 . (43)

10

V. HARTREE-FOCK THEORY AND IMPLEMENTATION

We are now going to expand what we know about derivatives into the realm the quantum many-body problem.
In the following discussion we will assume a) non-relativity; b) quantum mechanics; and, c) only 2-body interactions
between fermions. One may certainly derive and employ equations (such as the Kline-Gordon equation or Dirac
equation) that combine special relativity and quantum mechanics into one expression, but here we will limit our
discussion to the Schrodinger equation and its consequences.

The many-body Schrodinger equation is given by

HΨ(1, 2, · · · , A) =

A
∑

i=1

− h̄2

2mi
∇2
i +

A
∑

i<j

V (i, j)

Ψ(1, 2, · · · , A) = EΨ(1, 2, · · · , A) , (44)

where the notation 1, 2, represents particle coordinates, such that i = {~ri, si, (ti)}, and si is the spin-projection of the
particle. (In the nuclear case, we also worry about isospin-projection ti for neutrons and protons.) This is one of the
most important equations you will ever run into in your physics careers. It states several things. The kinetic energy
term is a sum over all particles, while the potential term is a restricted sum so that double-counting does not occur.
Note also that the wave function Ψ depends on all single-particle wave functions. That is why we call this equation
a many-body Schrodinger equation. We will use various numerical techniques to tackle this equation.

In Dirac notation, the exact Schrodinger equation is

H | Ψ〉 = E | Ψ〉 , (45)

for which we may define an energy functional that depends on the form of the wave function

E [Ψ] =
〈Ψ | H | Ψ〉
〈Ψ | Ψ〉 . (46)

We are interested in finding the minimum value of E, so we vary: δE [Ψ] = 0 to obtain

〈δΨ | H − E | Ψ〉+ 〈Ψ | H − E | δΨ〉 = 0 . (47)

Since | Ψ〉 is in general complex, we carry out the variation independently over | δΨ〉 and 〈δΨ |. When we do this, we
find that both equations

〈δΨ | H − E | Ψ〉 = 0 , 〈Ψ | H − E | δΨ〉 = 0 . (48)

This means that H | Ψ〉 and 〈δΨ | H − E | Ψ〉 are equivalent statements.

A. Hartree-Fock Theory

In the previous discussion, we assumed that the many-body wave function could be completely determined. Suppose
instead, that we restrict | Ψ〉 to a set of mathematically simple trial wave functions. If the true wave function is not
in the set, then the minimal solution is no longer the exact eigenfunction; it is an approximation, so that

E [Ψ] ≥ E0 , (49)

where E0 is the lower bound to the energy (and the true answer), and in this case Ψ represents a trial wave function.
We can easily prove this statement. In any basis of wave functions that span the entire Hilbert space, we may write

| Ψ〉 =
∞
∑

n=0

an | Ψn〉 (50)

Applying the Hamiltonian of the system, H, we obtain

H | Ψn〉 = En | Ψn〉 . (51)

11

The expectation of the energy becomes

E [Ψ] =

∑

nn′〈Ψn | H | Ψn′〉a∗nan′

∑

nn′〈Ψn | Ψ′
n〉a∗nan′

=

∑

nn′ a∗nan′Enδnn′

∑

n | an |2

≥
∑

n | an |2 E0
∑

n | an |2
= E0 (52)

The equality is true if and only if all coefficients an with n 6= 0 vanish, that is if | Ψ〉 ∝| Ψ0〉. If we want to obtain
excited states, then we solve the same problem with the subsidiary condition that 〈Ψ1 | Ψ0〉 = 0, and a0 = 0. We
enforce similar equations for the ith excited state.

Now, we would like to solve a realistic problem. Approxmations necessarily become a part of the theory when we
do not know Ψ0 exactly. For example, when we restrict the Hilbert space to a finite basis, at that stage we have
introduced an approximation. We therefore will find only an approximation to | Ψ0〉. Excited states are obtained by
solving for | Ψ1〉 with 〈Ψ1 | Ψ0〉 = 0, and | Ψ2〉 is solved with two conditions 〈Ψ2 | Ψ0〉 = 0 and 〈Ψ2 | Ψ1〉 = 0, and so
forth. Obviously, the computation may become complicated quite quickly.

That all computational answers are in some way only approximations to reality should not be surprising: as our
computational techniques are always geared toward finite spaces, no computation will ever yield an absolutely exact
solution to physical reality. The point, and often bain, of computational science, is to have a reasonable description
(defined by the precision desired for the problem) of reality.

We begin our journey into the quantum many-body problem at the mean-field level. In this case, the solution to
the many-body problem will be a single Slater determinant consisting of antisymmetrized single-particle states. In
coordinate space, this Slater determinant looks like

| ΨHF〉 =
1√
N !
|

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

ψ1(xN) ψ2(xN) · · · ψN (xN)

| , (53)

where the norm of the many-body wave function is given by

〈ΨHF | ΨHF〉 = 1 , (54)

and there are N particles. This wave function must yield an energy

EHF = 〈ΨHF | H | ΨHF〉 , (55)

for a given Hamiltonian

H =
∑

i

−h̄2
2mi
∇2
i +

∑

i<j

V (ri, rj) . (56)

The Hamiltonian is thus a function of all coordinates in the problem. At this stage I have suppressed the spin (and
in the nuclear case isospin) coordinates, and am only showing the spacial coordinates. The sums in the Hamiltonian
run over all particles within the system.

Hartree-Fock theory is variational. We therefore require that δEHF = 0. This statement allows us to derive
the Hartree-Fock equations, which we will now do in some detail. Upon substitution of the Hartree-Fock Slater
determinant into the energy equation, we find that

EHF =

N
∑

i=1

Hi +
1

2

N
∑

i,j=1

(Jij −Kij) (57)

where

Hi =

∫

ψ∗
i (r)

[−h̄2
2mi
∇2
i

]

ψi(r)dr (58)

Jij =

∫ ∫

ψi(r)ψ
∗
i (r)V (r, r′)ψ∗

j (r
′)ψj(r

′)drdr′ (59)

Kij =

∫ ∫

ψi(r)ψ
∗
j (r)V (r, r′)ψ∗

i (r
′)ψj(r

′)drdr′ (60)

12

Note that Kii = Jii so that the sum is now unrestricted.
We may now vary each term either with respect to ψ∗ or ψ. We choose to vary with respect to ψ∗. The first term

is simply the kinetic energy term. The variation yields

δEHF

δψ∗
α(r

′)
=

∫

δiαδ(r− r′)
[−h̄2
2mi
∇2
i

]

ψi(r) =
−h̄2
2mα

∇2
αψα(r) (61)

The two-body terms yield

δJij
δψ∗

α(r
′)

=
∑

j

∫

drψ∗
j (r)ψj(r)V (r, r′)ψα(r

′) , (62)

δKij

δψ∗
α(r

′)
=
∑

j

∫

drψ∗
j (r)ψj(r

′)V (r, r′)ψα(r
′) . (63)

Now, we define the one-body density as

ρ(r) =
∑

i

ψ∗
i (r)ψi(r) , (64)

and the two-body density as

ρ(r, r′) =
∑

i

ψ∗
i (r)ψi(r

′) . (65)

The set of Hartree-Fock equations then becomes

ĥαψα(r
′) =

−h̄2
2mα

∇2ψα(r
′) +

∫

drρ(r)V (r, r′)ψα(r
′)−

∫

drρ(r, r′)V (r, r′)ψα(r) = εαψα(r
′) . (66)

Notice that the single-particle hamiltonian ĥ depends on the eigenfunctions ψα. In order to solve this type of equation,
we must iterate it. This representes an added complication to our original eigenvalue problem that we carried out
for the one-body Schrodinger equation, but in essence the method of solution is the same. One begins with an initial
guess for the single particle wave-functions. This allows one to compute the densities, which are then used to construct
the Hamiltonian matrix. Upon diagonalization, one obtains new wavefunctions from which one may construct new
densities, and recompute the eigenvalue problem. This is done iteratively until convergence is reached.

Of course, the exchange term in the equation makes the simple outlined procedure much more complicated unless
the potential has the form

V (r, r′) = V (r)δ(r− r′) , (67)

In this case, the exchange term becomes

−
∫

drρ(r, r′)V (r)δ(r− r′)ψα(r) = −V (r′)ρ(r)ψ(r) , (68)

which can be more easily computed. This is a completely valid thing to do when one has contact interactions, but for
general interactions that contain long-range terms, other techniques must be used to solve the Hartree-Fock equations.

B. Density matrices

In N -body Hilbert space, we define an operator

ρ̂(r) =

N
∑

i=1

δ(r− ri) (69)

where the δ-function defines the space operator of particle i. We should be able to find a transformation that second
quantizes this operator.

ρ̂(r) =
∑

pq

dpqa
†
paq ,

dpq = 〈p | δ(r− r′) | q〉 =
∑

s

φ∗p(r, s)φq(r, s) , (70)

13

where the sum over s represents quantum numbers such as spin.
One can always transform Fock space operators to coordinate space through

a(r, s) =
∑

ν

φν(r, s)aν

a†(r, s) =
∑

ν

φ∗ν(r, s)a
†
ν (71)

if the single particle wave functions satisfy orthonormality (that is if 〈ν | ν ′〉 = δνν′) and completeness (for which
∑

ν | ν〉〈ν |= 1).
One can always perform the inverse transformation to find the Fock space operators:

aν =
∑

s

∫

d3rφ∗ν(r, s)a(r, s)

a†ν =
∑

s

∫

d3rφν(r, s)a
†(r, s) . (72)

The operator ρ̂(r) is then given by

ρ̂(r) =
∑

s

a†(r, s)a(r, s) . (73)

The expectation value of this operator in the many-body Slater determinant is given by

〈Ψ | ρ̂(r) | Ψ〉 =
∑

s

〈Ψ | a†(r, s)a(r, s) | Ψ〉 = N
∑

s1,s2,···,sN

∫

d3r2 · · · d3rN | Ψ(r, s, r2, s2, · · · , rNsN) |2= ρ(r) (74)

So the expectation value of ρ̂(r) is just the density ρ(r̂) at the point r. Note also that the integral over the density
yields the number of particles in the system,

∫

d3rρ(r) = N .
We are now able to define a density matrix as

〈r, s | ρ̂Ψ | r′, s′〉 = ρ(r, s, r′, s′) = 〈Ψ | a†(r′, s′)a(r, s) | Ψ〉
=
∑

pq

φp(r, s)ρpqφ
∗
q(r

′, s′)

=
∑

pq

〈r, s | p〉ρpq〈q | r′, s′〉 . (75)

The matrix element of the density operator in some basis is given by

ρ̂ =
∑

pq

| p〉ρpq〈q | (76)

where the matrix elements ρpq = 〈Ψ | c†qcp | Ψ〉.
If we define a unitary transformation, D, then the density transforms as

(D†ρD)ll′ = ρlδll′ , (77)

and the creation (and anihilation) operators transform as

a†l =
∑

l′

Dl′lc
†
l′ , (78)

with ρl = 〈Ψ | a†l al | Ψ〉. Note that 0 ≤ ρl ≤ 1 so that ρl represents the probability that l is occupied in Ψ. As in the
cordinate space case, the sum over all l yields the particle number:

N =
∑

l

ρl = Trρ =
∑

s

∫

ρ(r, s, r, s)d3r =

∫

ρ(r)d3r . (79)

14

C. Hartree Fock in a basis

In many applications, one uses basis states rather than a numerical grid in coordinate space. One chooses basis
states that best fit a given problem. For example, chemistry and atomic applications may use the atomic orbital basis
(AOB) states, nuclear applications typically require spherical harmonic oscillator states. In either case, the formalism
will be the same. Let us assume that we know the set of eigenfunctions that satisfies the single-particle hamiltonian
h(i) such that

h(i)φk(i) = εkφk(i) , i = {ri, si, ti} . (80)

The wave functions φk(i) may be expanded in a different basis (both bases must span the same Hilbert space) using
a unitary transformation, D, such that D†D = DD† = 1. Therefore

φk =
∑

l

Dlkχl , (81)

where we choose to expand the true wave functions in the set of {χl}. We also define the creation and anihilation

operators in the χ basis as c†l and cl. These operators also transform according to D, such that

a†k =
∑

l

Dlkc
†
l . (82)

The operators (a†k, ak) and (c†l , cl) obey separate commutation relations.
The single particle density also transforms from basis to basis. In the χ basis, it is given by

ρll′ = 〈Φ | c†l′cl | Φ〉 =
∑

kk′

DlkD
∗
l′k′〈Φ | a†k′ak | Φ〉 =

A
∑

i=1

DliD
∗
l′i , (83)

We see immediately that ρ is diagonal in the Hartree-Fock basis, while in the χ basis, it is not diagonal. Furthermore,
in the Hartree-Fock basis, we occupy the HF states completely or not, so that the eigenvalues of ρ are 0 or 1. Therefore
ρ2 = ρ.

Now, we are in a position to derive the Hartree-Fock method using basis states. We will use a set of {Φ} determinants
consisting of A arbitrary but orthogonal single-particle wave functions φi as trial functions. We want to minimize the
energy within this set. The Hamiltonian is given by

H =
∑

l1l2

tl1ltc
†
l1
cl2 +

1

4

∑

l1l2l3l4

v̄l1l2l3l4c
†
l1
c†l2cl4cl3 , (84)

where the antisymmetrized matrix elements v̄ are given by

v̄l1l2,l3l4 = vl1l2,l3l4 − vl1l2,l4l3 , (85)

and vl1l2l3l4 = 〈φl1φl2 | V (r1, r2) | φl3φl4〉.
The Hartree-Fock energy is given by

EHF[ρ] =
∑

l1l2

tl1l2〈Φ | c†l1cl2 | Φ〉+
1

4

∑

l1l2l3l4

v̄l1l2l3l4〈Φ | c†l1c
†
l2
cl4cl3 | Φ〉

=
∑

l1l2

tl1l2ρl2l1 +
1

2

∑

l1l2l3l4

ρl3l1 v̄l1l2l3l4ρl4l2 . (86)

If we are in the Hartree-Fock basis, where ρ is diagonal, then

EHF =

A
∑

i=1

tii +
1

2

A
∑

i,j=1

v̄ij,ij , (87)

which is exactly what we derived before.
We minimize the E[ρ] for all ρ: (ρ+ δρ)2 = ρ+ δρ keeping only linear terms in δρ. In the Hartree-Fock basis, when

ρ is diagonal, the pp and hh matrix elements of δρ have to vanish. Therefore

ρδρρ = σδσσ = 0 , (88)

15

particle states, empty, m

Fermi surface

hole states, filled, i

FIG. 4: States in the mean field basis.

where ρ = 1− σ. Under this variation we find that only δρmi and δρim variations are allowed. Fig. 4 illustrates the
hole and particle states that we are discussing. Note that the particle states are initially empty and this available
to receive a particle, while the hole states are available to donate a particle. We typically use the labels m for the
particle states and i for the hole states.

When we apply this variation to the Hartree-Fock energy, we obtain

δE = E [ρ+ δρ]− E [ρ]

=
∑

kk′

hkk′δρk′k =
∑

mi

hmiδρim + c.c. , (89)

where

hkk′ =
∂EHF [ρ]

∂ρk′k
(90)

Note that h = t+ Γ with

Γkk′ =
∑

ll′

vkl′k′lρll′ . (91)

Since only δρmi are allowed, the particle-hole matrix elements vanish and h does not mix particle and hole states of
ρ. This leaves us with the following:

hmi = tmi +

A
∑

j=1

v̄mjij = 0 , fori ≤ A , m > A , (92)

which is equivalent to

[h, ρ] = [t+ Γ(ρ), ρ] = 0 (93)

in the Hartree-Fock basis. Thus h and ρ can be diagonalized simultaneously, and ρ is diagonal in the HF basis (as is
h). Therefore, the eigenvalue problem that we need to solve becomes

hkk′ = tkk′ +

A
∑

i=1

v̄kik′i = εkδkk′ , (94)

All of this is, of course, written in the Hartree-Fock basis. In an arbitrary basis, this problem becomes

∑

l′

hll′Dl′k =
∑

l′

tll′ +

A
∑

i=1

∑

pp′

v̄lp′l′pDpiDp′iρpp′

Dl′k = ekDlk , (95)

We recall that the density is given by ρpp′ = sumA
i=1DpiDp′i so that the equation becomes

∑

l′

tll′ +
∑

pp′

v̄lp′l′pρpp′

Dl′k = εkDlk (96)

16

VI. KOHN-SHAM METHOD

A. Basic Principles

The Kohn-Sham method postulates from the start that the ground-state energy of a many-fermion system is
obtained as the minimum of an energy functional:

E [ρ] =

∫

ρ(bfr)V (r)dr+ F [ρ] (97)

with

F [ρ] = T [ρ] + Vee [ρ] . (98)

We choose ρ such that E [ρ] is minimized and thus satisfies the Euler equation

µ = V (r) +
δF [ρ]

δρ(r)
, (99)

and µ is associated to the number of particles such that

N =

∫

ρ(r)dr . (100)

If we were to consider only the density ρ and not the single-particle wave functions, then we would have Thomas-Fermi
theory. However, we are going to require a different formulation that includes quantum mechanics.

We begin with an exact formula for the ground-state kinetic energy:

T =

N
∑

i=1

ni〈ψi | −
1

2
∇2 | ψi〉 , (101)

where ψi are natural spin orbitals and ni are occupation numbers for the state i with 0 ≤ ni ≤ 1. We define

ρ(r) =

N
∑

i=1

ni
∑

s

| ψi(s, r) |2 (102)

Now, for any interacting system of interest, the space of solutions is infinite. One can build a simple theory using

Ts [ρ] =

N
∑

i=1

〈ψi | −
1

2
∇2 | ψi〉

ρ(r) =

N
∑

i=1

∑

s

| ψi(r, s) |2 (103)

where we have ni = 1 for i = 1, 2, · · · , N , and ni = 0 for i ≥ N . We now employ a non-interacting reference system
with

Ĥs =

N
∑

i=1

(

−1

2
∇2
i

)

+

N
∑

i=1

Vs(ri) , (104)

where Vs is an external one-body field. The ground-state density of this Hamiltonian is exactly ρ with ground-state
wave function

Ψs =
1√
N !

det [ψ1ψ2 · · ·ψN] . (105)

The single-particle states satisfy

ĥsψi =

[

−1

2
∇2 + Vs(r)

]

ψi = εiψi , (106)

17

and

Ts [ρ] = 〈Ψs |
N
∑

i=1

(

−1

2
∇2
i

)

| Ψs〉 ,

=

N
∑

i=1

〈ψi | −
1

2
∇2 | ψi〉 . (107)

Now, Kohn and Sham set up a problem for which Ts is the exact kinetic energy component, while all other corelations
are moved to a different term. In this case, the energy functional is given by

F [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] . (108)

If we are dealing with the Coulomb interaction, then the direct term, J [ρ] is given by

J [ρ] =
1

2

∫

dr1dr2
ρ(r1)ρ(r2)

| r1 − r2 |
. (109)

The exchange correlation energy is given by

Exc [ρ] = T [ρ]− Ts [ρ] + Vee [ρ]− J [ρ] (110)

Under these conditions, we want to find the ρ that minimizes E [ρ] and satisfies the Euler equation

µ = veff (r) +
δTs [ρ]

δρ
(111)

where the K-S effective potential is

veff (r) = V (r) +
δJ [ρ]

δρ(r)
+
δExc [ρ]

δρ(r)

= V (r) +

∫

dr′
ρ(r′

| r− r′ | + vxc(r) (112)

where vxc(r) =
δExc[ρ]
δρ(r)

We will not solve Eq. 111 directly, but we will follow an indirect approach first discussed by Kohn and Sham. We
write

E [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] +

∫

V (r)ρ(r)dr

=

N
∑

i=1

∑

s

∫

ψ∗
i (r)

(

−1

2
∇2

)

ψi(r)dr+ J [ρ] + Exc [ρ] +

∫

v(r)ρ(r)dr , (113)

with

ρ(r) =

N
∑

i=1

∑

s

| ψi(r, s) |2 . (114)

We vary ψi rather than ρ subject to the condition that

∫

ψ∗
i (r)ψj(r)dr = δij . (115)

We are therefore able to define a functional

Ω [{ψi}] = E [ρ]−
N
∑

i,j=1

εij

∫

ψ∗
i (r)ψj(r)dr , (116)

18

for which we require

δΩ [{ψi}] = 0 . (117)

The variation yields

ĥeffψi =

[

−1

2
∇2 + veff

]

ψi =

N
∑

j=1

εijψj . (118)

The effective operator veff (r) is determined through Eq. 112 and is local. Therefore ĥeff is Hermitian, and εij is
hermitian and can be diagonalized by a unitary transformation; that leaves Ψs invariant, ρ(r) invariant, and hence

ĥeff invariant.
Therefore the K-S orbitals are given by

[

−1

2
∇2 + veff (r)

]

ψi = εiψi

veff (r) = v(r) +

∫

ρ(r)

| r− r′ |dr
′ + vxc(r)

ρ(r) =
N
∑

i=1

∑

s

| ψi(r, s) |2 . (119)

Let us summarize this discussion. The Hartree equations ignore the exchange term. The Hartree-Fock equations
yield a variational anzatz and are more difficult to solve due to the exchange term. DFT is exact in principle, provided
one can identify vxc(r). It is not much more difficult to solve than Hartree and easier to solve than Hartree-Fock since
the effective potentials are all local.

B. Local Density Approximation

When we use DFT, we want to obtain a functional that contains only local terms in the density. Thus the exchange
term arrising in Hartree-Fock theory

K [rho] =
1

4

∫

v(r1, r2)ρ(r1, r2)dr1dr2 , (120)

cannot directly be used in DFT. One common procedure used in DFT is to assume a local density approximation
(LDA) for the exchange term. The approximation is valid when the charge density is smooth, and correction terms
can be added to the approximation if needed.

In order to derive the LDA, we put N particles in a box of length lx, ly, and lz. The number of particles should be
large. We assume periodic boundary conditions. The k-space wave function is then

ψ(kx, ky, kz) =
1

l3/2
ei(kxx+kyy+kzz)

=
1

V 1/2
eik·r (121)

where

kx =
2π

l
nx

ky =
2π

l
ny

kz =
2π

l
nz ,

for nx, ny, nz = 0,±1,±2, · · ·, and the energy is given by

E(nx, ny, nz) =
h̄2

8π2ml2
(

(2nx)
2 + (2ny)

2 + (2nz)
2
)

, (122)

19

The density is then

ρ(r1, r2) =
2

V

∑

k ∈ occeik·(r1−r2) (123)

In the limit of a large number of particles the descrete sum becomes

ρ(r1, r2) =
1

4π3

∫

dkeik·(r1−r2)

=
1

4π3

∫ kf

0

k2dk

∫ ∫

eik·r12 sin θdθdφ , (124)

where we have used the fact that dn = 1
2π3 dk = V

8π3 dk. Recall that the local density ρ(r) = ρ(r, r). The density is
then just

ρ(r) =
k3f
3π2

, (125)

and thus the momentum can also be expressed as a function of rho, kf (r) =
[

3π2ρ(r)
]1/3

.
For an inhomogeneous system we may transform to relative and center-of-mass coordinates

r =
1

2
(r1 + r2) s = r1 − r2 (126)

and we choose s to lie on the kz axis. Then

ρ(r1, r2) =
1

4π3

∫ kf

0

k2dk

∫ π

θ=0

sin θeikr12 cos θdθ

∫ 2π

φ=0

dφ

= 3ρ(r)
sin t− t cos t

t2
= ρ(r, s) , (127)

where t = kfr)s. This is still an exact expression in the limit of large N .
We are now in a position to work out what the DFT effective potential is for the Coulomb exchange term. We have

KD [ρ] =
1

4

∫ ∫ | ρ(r, s) |2
s

drds

= 9π

∫

ρ2(r)
1

k2f
dr

∫ ∞

0

(sin t− t cos t)2
t5

dt

= Cx

∫

ρ4/3(r)dr (128)

where Cx = 3
4

(

3
4

)1/3
.

Now, we can go back to DFT and see where the energy functional should get modified to incorporate the LDA
approximation. The exchange-correlation part of the energy functional becomes

ELDA
xc [ρ] =

∫

ρ(r)εxc(ρ)dr , (129)

for which the potential is given by

vLDAxc (r) =
δELDA

xc

δρ(r)
= εxc(ρ(r)) + ρ(r)

∂εxc(ρ)

∂ρ
. (130)

The K-S equations then read
[

−1

2
∇2 + v(r) +

∫

ρ(r′)

| r− r′ |dr
′ + vLDAxc (r)

]

ψi = εiψi . (131)

The exchange-correlation energy can be broken up into two parts. The first part is just the exchange energy which
we derived above:

εx(ρ) = −Cxρ(r)1/3 , (132)

20

while the correlation energy remains to be determined.
Several people have calculated the correlation functional. One very successful method was pursued by Ceperley

and Alder [PRL 45, 566 (1980)] who did a quantum Monte Carlo calculation of the functional. Vosko, Wile and
Nusiar (1980) [Can. J. Phys. 58, 1200] parameterized the Cepereley results and created a general exchange-correlation
functional to be used in DFT. Since that time many εxc functionals have been generated. There is a system dependence
to them, and they cannot be used blindly.

VII. TIME-DEPENDENT MEAN-FIELD THEORY

In the previous section, we discussed time-independent solutions to the mean-field equations. The Hartree-Fock or
DFT formulation may also be carried over to time-dependent problems. For example, suppose we perturb the static
solutions. If we do this in the linear regime of the perturbing operator, then we can use time-dependent mean-field
theory to obtain the small oscillation solutions about the static mean-field solution. If we want to study nuclear
collisions, this may also be performed with a time-dependent mean-field approach.

The exact solution to the time-dependent Schrodinger equation is

ih̄∂tΨ = ĤΨ , (133)

for which the formal solution is

| Ψ(t)〉 = exp

(

− iĤt
h̄

)

| Ψ(0)〉 . (134)

We derive the time-dependent Hartree-Fock (TDHF) equations from a variational principle:

L = 〈Ψ(t) | ih̄∂t −H | Φ(t)〉; , (135)

where | Ψ(t)〉 are Slater determinants of single-particle functions φi(r, t). The action is then given by

I12 =

∫ t2

t1

L [φ, φ∗] dt , (136)

where we have fixed end points in time. The TDHF equations will be given by the variational principle δI12 = 0.
These equations are

ih̄∂tφi(r, t) =

[

− h̄2

2m
∇2 + ΓH(r, t)

]

φi(r, t) +

∫

dr′ΓEx(r, r
′, t)φi(r

′, t) , (137)

where

ΓH(r, t) =

∫

dr′V (r, r′)ρ(r′, t)

ΓEx(r, r
′, t) = −v(r, r′)ρ(r, r′, t)

ρ(r, r′, t) =
A
∑

i=1

φi(r, t)φ
∗
i (r

′, t) . (138)

Eqn. 137 can be written as

ih̄
∂φ(r)

∂t
= h(ρ(r, t))φ(r, t) , (139)

We would like to discretize this equation in both space and time. We use zj = j∆z and tn = n∆t as the discretized
variables. The spacial discretization yields

ih̄∂tφj =
∑

k

hjkφk . (140)

For the time discretization, we choose the form

ih̄

[

φn+1
j − φnj

∆t

]

=
∑

k

h
n+1/2
jk φ

n+1/2
k . (141)

21

In this case, we need to evaluate the right hand side at n + 1/2. We could make anaive approximation to this and
replace φn+1/2 with φn. Then we obtain an explicit solution to the time-dependent differential equation:

φn+1 =

(

1− i∆t
h̄

)

hφn (142)

This explicit solution requires that φn+1 is known only in terms of the previous solution φn. However, this is not
necessarily a good solution. Since h is hermitian, the eigen values of

(

1− ih∆t
h̄

)

have modulus ≥ 1. Therefore, the
time evolution by continued application of Eqn. 142 results in exponential amplification of the component of φ with
an eigenvalue associated with the moduleus.

The problem with using Eqn. 142 is that it is a nonunitary representation of an equation that is expressly unitary.
We can overcome this problem by replacing φn+1/2 by the average value of φn and φn+1. Then, the evolution equation
becomes

ih̄
φn+1 − φn

∆t
=

1

2
h
(

φn + φn+1
)

. (143)

This representation yields an implicit equation. It is a set of simultaneous equations which formally can be written as

φn+1 =

(

1− ih∆t
2h̄

1 + ih∆t
2h̄

)

φn . (144)

the operator, given in () is manifestly unitary. It’s eigenvalues have unit modulus. It is accurate through order (∆t)2

and indeed, it is the [1, 1] Pade approximate to exp (ih∆t/h̄).
We finally must recall that the HF equations will have a time-dependent h, so that the evolution equation is

φn+1 =

(

1− ihn+1/2∆t
2h̄

1 + ihn+1/2∆t
2h̄

)

φn , (145)

for which we must have a solution for hn+1/2. We can do this by first solving for the wave function φ̄:

φ̄ =

(

1− ihn∆t
2h̄

1 + ihn∆t
2h̄

)

φn . (146)

Now, with φ̄, we construct h̄, from which we obtain hn+1/2 = 1
2 (h

n + h̄). Therefore, we must solve the set of

simultaneous equations twice. If we were to use hn+1/2 = hn we would have a retarded potential resulting in an
energy decrease; with the approximation hn+1/2 = h̄ we would see a slightly advanced potential, and hence an
increasing energy. The procedure of replacing hn+1/2 by the average of hn and h̄ conserves energy.

VIII. THE BCS EQUATIONS

Everyone should read those papers that revolutionized science. In 1957 Bardeen, Cooper, and Schrieffer (Phys.
Rev. 108, 1175 (1957)) wrote such a paper. They were interested in the phenomenon of superconductivity, and
needed to move beyond mean-field descriptions of the ground state of a quantum-mechanical system. If we begin with
the Hamiltonian

H =
∑

k1k2

tk1k2
a†k1

ak2
+

1

4

∑

k1k2k3k4

Vk1k2k3k4
a†k1

a†k2
ak4

ak3
, (147)

then the BCS wave function will be given by

| BCS〉 = Πk>0

(

uk + vka
†
ka

†

k̄

)

| −−〉 . (148)

In this equation k > 0 and the conjugate variable k̄ < 0. Note that {k, k̄} generate the complete single particle space.
The quantities u2k and v2k represent the probability that each paired state (that is, each kk̄ state) is (the u’s) or is not
(the v’s) occupied. The probabilities are determined such that

| uk |2 + | vk |2= 1 . (149)

22

The BCS state vectors usually have the property that when H is time-reversal invariant (T invariant), then

| k̄〉 = T | k〉 . (150)

For example, in the oscillator basis | k〉 =| nljm〉 and | k̄〉 =| nlj −m〉, with m > 0.
We note that the BCS wave function given in Eq. 148 looks like a superposition of pair states

| BCS〉 ∝| −−〉+
∑

k>0

vk
uk
a†ka

†

k̄
| −−〉+ 1

2

∑

kk′>0

vkv
′
k

uku′k
a†ka

†

k̄
a†k′a

†

k̄′ | −−〉 . (151)

This equation means that the particle number in this theor is not conserved. This is not a problem in the limit when
the number of particles N is large, as in the solid state, but could be a problem in nuclear or atomic physics. Of
course, one can always project the BCS solution to good particle number (we leave this for a future discussion).

Beginning with the Hamiltonian given above, and the BCS wave function ansatz, let us stipulate that

〈BCS | N̂ | BCS〉 = N , (152)

which means that the average number of particles will be given by the solution. This is equivalent to adding to the
original Hamiltonian a quantity −λN̂ , so that we actually produce solutions for the Hamiltonian

H ′ = H − λN̂ , (153)

where the energy of the system will be given by

E = 〈BCS | H | BCS〉 , (154)

and λ is determined from

λ =
dE

dN
. (155)

We note also that dE
dλ = λdNdλ . As we mentioned, the particle number is not constant in standard BCS theory. The

particle-number fluctuation is given by

(∆N)
2
= 〈BCS | N̂2 | BCS〉 −N2 = 4

∑

k>0

u2kv
2
k . (156)

We can now calculatethe expectation of H ′. It is

〈BCS | H ′ | BCS〉 = 〈BCS | H | BCS〉 − λ〈BCS | N̂ | BCS〉
= Πk>0〈− | (u∗k + v∗kak̄ak)
{

∑

k1k2

tk1k2
a†k1

ak2 − λ
∑

k

a†kak +
1

4

∑

k1k2k3k4

V̄k1k2k3k4
a†k1

a†k2
ak4

ak3

}

Πk′>0

(

uk′ + vk′a†k′a
†

k̄′

)

| −〉

=
∑

k

{

(tkk − λ) +
1

2

∑

k′<>0

V̄kk′kk′v2kv
2
k′

}

+
∑

kk′>0

V̄kk̄k′k̄′ukvkuk′vk′ . (157)

We take the variation

0 = δ〈BCS | H ′ | BCS〉

=

(

∂

∂vk
+
∂uk
∂vk

∂

∂uk

)

〈BCS | H ′ | BCS〉 (158)

to find the parametners. The variation yields the following equations for the single particle states

0 = 2ε̃kukvk +∆k

(

v2k − u2k
)

ε̃k =
1

2

(

tkk + tk̄k̄ +
∑

k′<>0

(

V̄kk′kk′ + V̄k̄k′k̄k′

)

v2k

)

− λ

∆k = −
∑

k′>0

V̄kk̄k′k̄′uk′vk′ . (159)

23

For fixed ε̃k and ∆k we obtain two quadratic equations with solutions

v2k =
1

2

[

1± ε̃k
√

ε̃k +∆2
k

]

u2k =
1

2

[

1± ε̃k
√

ε̃k +∆2
k

]

. (160)

When ∆ = 0 (that is, when there is no interaction) we must have v2k = 1 and u2k = 0 for occupied orbits (εk < 0), we
obtain

v2k =
1

2

[

1 +
ε̃k

√

ε̃k +∆2
k

]

u2k =
1

2

[

1− ε̃k
√

ε̃k +∆2
k

]

with 2
∑

k>0

v2k = N . (161)

Additionally, we compute ∆k through the gap equation

∆k = −1

2

∑

k′>0

V̄kk̄k′k̄′

∆k′

√

ε̃4k′ +∆2
k′

. (162)

We can obtain a better physical understanding of what these equations mean by investigating the case of a pure
pairing force for which the Hamiltonian is given by

H =
∑

k>0

εk

(

a†kak + a†
k̄
ak̄

)

−G
∑

kk′>0

a†ka
†

k̄
ak̄′ak′ (163)

for which the expectation of H ′ is

〈BCS | H ′ | BCS〉 = 2
∑

k>0

(

ε̃kv
2
k +

1

2
Gv4k

)

− ∆2

G
, (164)

and the gap and single-particle energies are

∆ = G
∑

k>0

ukvk (165)

ε̃k = εk − λ−Gv2k (166)

The terms Gv4k and Gv2k are often ignored, as they only shift the single-particle energies. We therefore come to a
simple expression for the amplitudes:

u2k =
1

2

(

1 +
εk − λ

√

(εk − λ)2 +∆2)

)

v2k =
1

2

(

1− εk − λ
√

(εk − λ)2 +∆2)

)

(167)

where v2k = 〈BCS | a†kak | BCS〉 are the occupation probabilities for the different single-particle states.
As G→ 0, the v2k → 1 for occupied orbitals and the v2k = 0 for the unoccupied orbitals. The fermi surface is shown

in Fig. VIII. The interaction depletes states below the fermi surface and partially fills states above it. The gap is
given by

∆ =
G

2

∑

k>0

∆
√

(εk − λ)2 +∆2
. (168)

24

In the very special case where all εk = 0 and are degenerate, one obtains from the number expectation that

vk =

√

N

2Ω

uk =

√

1− N

2Ω
(169)

where Ω is the number of k levels. We can work out the energy for this case by first noting that the gap is given by

∆ = G
∑

k>0

ukvk = G

√

N

2Ω

[

1− N

2Ω

]1/2

Ω = G

√

N

2

(

2− N

Ω

)

; , (170)

while ε̃k is given by

ε̃k = −G N

2Ω
. (171)

Thus, for degenerate shells, the energy is

E
(N)
BCS = −1

2
GNΩ

[

1− N

2Ω
− N

2Ω2

]

. (172)

The particle number fluctuation is given by

∆N

N
=

1√
N

√

2− N

Ω
. (173)

We see therefore that ∆ → 0 for an empty or filled shell, while at mid-shell filling 2∆ = GΩ, which is the energy of
the first excited state.

A. Project: HF+BCS

We now want to modify our Hartree-Fock program so that we can include BCS pairing into it. We accomplish this
goal by noting the difference between the HF and BCS occupation probabilities:

ρHF(r) =

A
∑

i=1

| φi(r) |2

ρHF+BCS(r) =

N
∑

i=1

ni | φi(r) |2 . (174)

Note that in the case of HF, the sum is over only occupied states (since the occupation is ni = 1 for i ≤ A, and 0
otherwise), while for BCS theory, one must sum over all levels.

In this project, we want to calculate the BCS occupation probabilities using Eqs. 159,161. We then want to calculate
a new density, ρHF+BCS, from which we may solve the HF equations. So we have to modify the HF program some.

IX. MONTE CARLO ALGORITHMS

A. Introduction

We want to turn our attention from differential equations to statistical quadrature. Here we enter the world of
Monte Carlo algorithms. Researchers apply these algorithms to many different types of problems. We will look at
Hamiltonian problems.

25

We want to worry about statistical systems that have huge numbers of degrees of freedom. Magnetic spin systems
fall into this category. The Ising model can be used to describe a ferromagnet with a strong unixial anistropy:

HIsing = −J
∑

<i,j>

Si · Sj −H
∑

i=1

Si (175)

with Si = ±1. This simple hamiltonian describes a spin system with Si = ↑, ↓ where J is the exchange energy and
gives the strength of the nearest neighbor interactions, and −H∑i Si gives the Zeeman energy of the system.

One can set up other models within the spin-chain picture: The xy model is used to describe planar anistropy:

Hxy = −J
∑

<i,j>

(Sxi S
y
j + Syi S

x
j −Hx

∑

i

Sxi , (176)

with (Sxi)
2 + Syi)

2 = 1. The Heisenberg model is used for three-dimensional isotropy:

HHeis = −J
∑

<i,j>

(~Si · ~Sj)−Hz

∑

i

Szi , (177)

and (Sxi)
2 + (Syi)

2 + (Szi)
2 = 1.

Of course, there are many varients to these models, depending on the physical system of interest. Our most general
second-quantized Hamiltonian

H =
∑

αβ

tαβa
†
αaβ +

1

4

∑

αβγδ

V̄αβγδa
†
αa

†
βaδaγ (178)

also fits nicely into these kinds of theories.
What can be measured (or calculated) for Hamiltonians of the form given above? First, for Fock-space applications,

the partitition function could be calculated

Z = Tre=βH =
∑

i

〈i | e−βH | i〉 , (179)

where | i〉 represents a many-body state in the Hilbert space. If, instead of Slater determinants, we have a variable
like spin (in the Heisenberg or Ising cases), then the state vector is given by ~x = {S1, S2, · · · , SN}, and the partition
function is

Z =

∫

d~xe−βH(~x)A(~x) (180)

and the expectation of any observable is given by

〈A(~x)〉 = 1

Z

∫

d~xe−βH(~x)A(~x) (181)

Note the differences between the Fock-space application and the spin applications. In Fock space, we sample the
relavant many-body Slater determinants | i〈, while in spin-space, we explore the distribution of spins {~x}. Either way
the number of degrees of freedom in these problems is quite large, so one must resort to Monte Carlo simulations.

What are we physically sampling when we use Monte Carlo? Let us suppose we have a system with a number of
many-body states with energies Ei and degeneracy Ω(i). The partition function is given by

Z =
∑

i

Ω(i)e−βEi , (182)

while the expectation of the Hamlitonian will be given by

〈H〉 = 1

Z

∑

i

Ω(i)Eie
−βEi (183)

So we obtain a thermally averaged expectation for the energy of the system.
There are several ways to approach these thermal averages. We mention four of them here:

26

• One can generate a grand-canonical ensemble sampling. Here, just as in the BCS equations, one adds a term
to the Hamiltonian to help sample at the appropriate number of particles

H ← H + λN (184)

• In the canonical ensemble, one fixes the particle number by projection techniques.

• Micro canonical ensembles are interested in teh exact energy of a system such that

ZMicro =

∫

δ(H(~x)− E)d~x . (185)

In this case, all states have the same weight.

• The zero-temperature formalism assumes a trial wave function and operates upon it with e−βH to obtain a
ground-state wave function. In this case, β is a numerical parameter rather than a heat-bath temperature. In
the limit of large β, the canonical and zero-temperature formalisms should appraoch the same ground-state
properties.

Why should one use MC sampling techniques? Let us consider a gas of atoms with pair-wise interactions. The
partition function is proportional to

Z ∝
∫

d3r1d
3r2 · · · d3rAe−β

∑

i<j
V (rij) . (186)

Here we must calculate a 3A-dimensional integeral. Suppose that quadrature allows each coordinate to take on 10
different values (this would be a highly course-grained mesh). Then the integral must be evaluated at 103A points.
Let A = 20. That’s 1060 evaluations. Let’s go find the world’s fastest computer: the ES40 runs at 40 Tflops peak
which is 4×1013 floating-point operations per second. So we would need 1047 seconds to evaluate the integral. That’s
about 1030 times the age of the universe! Clearly Monte Carlo methods should be considered.

B. Some basic ideas for Monte Carlo

Let’s start with something very simple. We want to perform a 1-dimensional integration of a function f(x).

I =

∫ 1

0

f(x)dx (187)

Now, we could use Simpson’s rule to accurately evaluate this integral. For a general interval, Simpson’s rule yields:
∫ b

a

f(x)dx =
∆x

3
[f(a) + 4f(a+ h) + 2f(a+ 2h) + 4f(a+ 3h) + · · ·+ 4f(b− h) + f(b)] . (188)

We could also take an even simpler approach

I =

∫ 1

0

f(x)dx =
1

N

N
∑

i=1

f(xi) (189)

where the set {xi} are chosen randomly with equal proability on the interval [0, 1]. What would be the uncertainty
in the evaluation? We can calculate the varience in the integral to answer this question. It is given by

σ2I =
1

N
σ2f =

1

N

1

N

∑

i

f2i −
[

1

N

N
∑

i

fi

]2

 (190)

where σf is the variance in f . We can make two important points from this equation

• The uncertainty in the estimate of the integral decreases as N−1/2. This is pretty bad in one-dimensional
problems, but great in multidimensional problems. Note also that this scaling feature is independent of the
dimensionality of the system.

• The precision is greater if f is as smooth as possible. The two extreme situations are shown in Fig 5. If f is
a straight line on the interval (as shown in the left half of the figure), then we would need only one point to
evaluate it, and the varience would be zero. However, if f approaches a delta function, we would find a large
varience on the interval.

27

0 1

f(x)

0 1

f(x)

FIG. 5: On the left is a function for which Monte Carlo sampling would yield zero variance for the integral, while on the right
is a function that would yield a high variance

C. A simple example integral

To illustrate the basic ideas of Monte Carlo evaluations of integrals, we will begin with the very simple integral

I =

∫ 1

0

1

1 + x2
dx =

π

4
= 0.78540 , (191)

which can be analytically evaluated. In this example, the integrand is positive definite in the interval. We could then
sample the integral by choosing x randomly on the interval [0, 1]. You have a simple numerical algorithm that does
just this (the subroutine is called ’straightsample’).

We would like to reduce the variance. This can be done by introducing a positive definite weight function over
which to integrate. The weight function, w, must integrate to 1 in the interval, so that for our example

∫ 1

0

w(x)dx = 1 , (192)

and the integral of Eqn. 191 becomes

I =

∫ 1

0

dxw(x)
f(x)

w(x)
. (193)

Now, we can change variables from x to y, such that dy = w(x)dx, and y(x = 0) = 0, y(x = 1) = 1. Since we have
dy
dx = w(x), we obtain for y(x) the integral function

y(x) =

∫ x

0

dx′w(x′) , (194)

With this substitution, the integral becomes

I =

∫ 1

0

dy
f(x(y))

w(x(y))
(195)

which we sample on the interval [0, 1]. We are now taking the average values of f/w. The integral is

I =
1

N

N
∑

i

f(x(yi))

w(x(yi))
. (196)

So, choosing w to behave approximately as f would automatically decrease the variance in the integrand. Of course,
you must be able to find the inverse relationship for

y(x) =

∫ x

0

dx′w(x′) , (197)

a task that is often difficult if not impossible to perform.

28

Note also, that the uniform distribution of points in y implies that the distribution of points in x will be dy
dx = w(x).

This implies that points are concentrated about the ’most important’ values of x where w (and hopefully) f are large.
Furthermore, little CPU time is spent in sampling the integrand where it is small.

Let’s look once again at our problem and choose w as

w(x) =
1

3
(4− 2x) . (198)

Note that w is positive definite everywhere and that
∫ 1

0
w(x)dx = 1. The integral for y is

y(x) =

∫ x

0

dx′w(x′) =

∫ x

0

4− 2x

3
=
x(4− x)

3
. (199)

We can invert this relation to obtain x(y). We obtain x(y) = 2 − (4 − 3y)1/2. We can now choose y on the interval
[0, 1]. The concept is demonstrated in Fig. 6 where we see plotted as a function of y the variables x, f , and w, and the
ratio f/w. Note that the ratio is a rather flat curve as a function of y, which would indicate a reduced variance. In
your test code, this is exactly the case: the variance is reduced when you use a function w that smoothes the desired
integrand. In multi-dimensions it is often difficult to find such functions. We will discuss what to do in these cases
below.

0 0.5 1 1.5 2

y = random number

0

0.5

1

1.5

2

f(
y)

x(y)
f(x(y))
w(x(y))
f(x(y))/w(x(y))

FIG. 6: The various functions as a function of the variable y.

Our discussion above can obviously be extended to d dimensions such that

I =

∫

ddxf(x) =
1

N

N
∑

i=1

f(xi) . (200)

In conventional quadrature, if there are a total of N points, then each dimension of the d dimensional integral is
broken up into ≈ N1/d intervals, so that dx ≈ N−1/d. The error in each cell of volume ∆xd is O((∆x)d+2). The total
error is then given by

NO((∆x)d+2) = NO[N− d+2
d] = NO[N−1−2/d] = O(N−2/d) (201)

29

Now, the Monte Carlo sampling error always scales like O(N−1/2) always. But quadrature errors behave like
O(N−2/d). So for d ≥ 4 Monte Carlo wins (assuming all prefactors are of order unity). For a large number of
dimensions Monte Carlo scales the same as for a small number of dimensions in the number of points taken.

Thus far, we have dealt only with integrals with limits on the interval [0, 1]. Of course, most integrals are not
confined to this limit. For example,

∫ ∞

0

e−xg(x)dx (202)

is a common integral form. We could sample on exp(−x). Then y = 1 − exp(−x) so that x = − ln(1 − y). So
the sample substitution is x = − ln[1 − y] where y is sampled on the uniform interval [0, 1], and x would be on the
appropriate interval of [0,∞].

Another way to sample an integral is called von Neumann rejection. We generate x between [0, 1] and we choose
w′(x) > w(x) everwhere in the region. The integral

∫

dxw′(x) > 1. We generate points in two dimensions x and
w′(x) that uniformally fill the area under w′(x), and ”accept” only those points that are under w(x). The acdepted
points will be distributed according to w(x). Here is how this algorithm works

• generate η on the interval [0, 1]

• generate xi acording to w′(x)

• xi is accepted if η < w(xi)/w
′(xi)

• if regected the generate a new pair and repeat.

This is efficient if w′(x) is close to w(x) in the entire region.
There are some odds and ends that we need to finish before moving on to the Metropolis algorithm. In many

instances we would like to use normally distributed variables such that

w(x) = (2π)−1/2e−x
2/2 . (203)

We can also do this in two-dimensions. Let’s suppose our integral is

∫

e−(x2
1+x

2
2)/2dx1dx2 , (204)

for which we can define r = (x21 + x22)
1/2 and θ = tan−1 x2

x1
. With the substitution of u = r2/2, the integral becomes

∫

e−ududθ (205)

The algorithm to generate two gaussian distributed variables is

• generate u between 0 and ∞

• generate θ uniformally between 0 and 2π. The x1 = (2π)1/2 cos θ and x2 = (2π)1/2 sin θ will be distributed
normally.

• The routine looks like

twou = −2 ln(1− rand)

radius =
√
twou

θ = 2πrand

gauss1 = radius cos θ

gauss2 = radius sin θ (206)

If you want w(x) = (2πσ)−1/2e−(x−x̄)2/2σ2 then you take values generated by the subroutine outlined above3 and
multiply them by σ incremented by x̄.

30

X. MULTIDIMENSIONAL INTEGRATION

We now want to turn to the Metropolis algorithm. We want ~x distributed with the probability diensity w(~x). The
Metropolis algorithm generates a sequence of points ~x0, ~x1, ~x2, as those visited successively by a random walker in ~x.
This algorithm takes on the following form:

• start at ~xn

• generate ~xt = ~xn + δ~x

• accept or reject according to the ratio r = w(~xt)/w(~xn)

• if r > 1 accept so that ~xn+1 = ~xt

• if r < 1 accept with probability r. We do this by randomly generating an η. if η < r accept. If we reject, then
~xn+1 = ~xn.

• Repeat the loop at the second item above

Let’s prove that this algorithm actually works. We start with a large number of walkers moving independently in
~x space. Nn(~x) is the density of walkers at ~x after n steps. The net number of walkers moving from ~x to ~y is, in the
next step,

∆N(~x) = Nn(~x)P (~x→ ~y)−Nn(~x)P (~y → ~x)

= Nn(~y)P (~x→ ~y)

[

Nn(~x)

Nn(~y)
− P (~y → ~x)

P (~x→ ~y)

]

(207)

P (~x→ ~y) is the probability that a walker will make a transition to ~y if it is at ~x. The walkers are at equilibrium if

Nn(~x)

Nn(~y)
=
P (~y → ~x)

P (~x→ ~y)
=
Ne(~x)

Ne(~x)
(208)

Changes in N(~x) when the system is not in equilibrium tend to drive it towards equilibrium. It can be shown that
the walkers will settle down to their equilibrium value.

The next question involves whether Ne(~x) ≈ w(~x). We note that

P (~x→ ~y) = T (~x→ ~y)A(~x→ ~y) (209)

where T is the probability of making a trial step from ~x to ~y and A is the probability of accepting that step. If ~y can
be reached from ~x in a single step δ, and vis versa, then

T (~x→ ~y) = T (~y → ~x) (210)

The equilibrium condition becomes

Ne(~x)

Ne(~y)
=
A(~y → ~x)

A(~x→ ~y)
. (211)

Let us suppose that w(~x) > w(~y). Then A(~y → ~x) = 1 and A(~x → ~y) = w(~x)/w(~y). If on the other hand we have
w(~x) < w(~y), then A(~y → ~x) = w(~x)/w(~y) and A(~x→ ~y) = 1. In either case

Ne(~x)

Ne(~y)
=
w(~x)

w(~y)
, (212)

so that the walkers are distributed with the appropriate distribution.
How does one choose the step size? Suppose the walkers are at w(~xn) = max. A large δ moves ~x such that

w(~xt) << w(~xn) and the step will be rejected. A very small δ will make the walkers hardly move, so that all steps
will be accepted. Typical simulations require that one chooses δ such that about half of the steps are accepted.

Another problem has to do with the sampling of physical quantities. ~x0, ~x1, · · · , ~xn are not independent of each
other since ~xn−1 was chosen in the vicinity of ~xn. For example, the usual calculation of the variance in the integral

I =

∫

d~xw(~x)f(~x)
∫

d~xw(~x)
(213)

31

is invalid if the different f(~xi) are not statistically independent. In this case one can calculate the autocorrelation
function

C(k) =
〈fifi+k〉 − 〈fi〉2
〈f2i 〉 − 〈fi〉2

, (214)

where

〈fifi+k〉 =
1

N − k

N−k
∑

i=1

f(xi)f(xi+k) . (215)

Note that C(0) = 1, but the non vanishing of C at k > 0 means that the fk’s are not independent. We can choose a
fixed interval over which to sample. A good choice is when C(k) ≤ 0.1. Then we sample at every kth point.

One other question that comes up is how do we start the system. Which ~X0 do we choose? In principle any choice
would do, in many-body systems, people often start from the mean field where w(~x) = max. One should not start
sampling the integral immediately in a simulation, but one should first allow the system to first thermalize. Typically
after M sweeps, the system will be thermalized and you can start sampling. For example, if you are measuring the
expectation of the Hamiltionian, it may decrease up to M steps and then remain statistically close to a given value.
This is the region where sampling of integrals should occur.

A. Ising model in 2-dimensions

We are now going to work on the problem of the Ising model in 2-dimensions. The spins are taken as classical
degrees of freedom. The Hamiltonian is given by

H = −J
∑

〈αβ〉

SαSβ −B
∑

α

Sα (216)

where 〈αβ〉 means that we sum over nearest neighbor pairs of spins. These spins interact with strength J . We will
assume periodic boundary conditions such that i = Nx is the same as i = 1, and j = Ny is the same as j = 1.

Physically, for J > 0 we have spin alignment favored which means that the system behaves like a ferromagnet,
whereas for J < 0 the system behaves like an antiferromagnet. We can measure various quantities on the lattice as a
function of the temperature and as a function of J and B. The partition function is given by

Z(J,B, β) =
∑

~S

exp(−βH(~S)) , (217)

and the weight is given by

w(~S) =
exp(−βH(~S))

Z
(218)

We can measure the magnetization of the system with

M =
∂ logZ

∂B
=
∑

S

w(S)

(

∑

α

Sα

)

, (219)

and the susceptibility as

ξ =
∂M

∂B
=
∑

S

w(S)

(

∑

α

Sα

)2

−M2 . (220)

The energy is given by

E =
∑

S

w(S)H(S) , (221)

32

while the specific heat is given by

CB =
∑

S

w(S)H2(S)− E2 (222)

You need to measure these quantities as a function of increasing β and as a function of the ratio J/B. You want to
do this for several lattice sizes (10x10, 20x20, 40x40, 80x80). Remember that you are looking for phase transitions.
How do phase transitions behave as a function of increasing the lattice size? Can you extrapolate your phase transition
temperature to the infinite lattice?

XI. AUXILIARY FIELD MONTE CARLO

A. Observables

AFMC methods rely on an ability to calculate the imaginary-time many-body evolution operator, exp(−βH), where
β is a real c-number. The many-body hamiltonian can be written schematically as

H = εO +
1

2
VOO , (223)

where O is a density operator (of form a†a), V is the strength of the two-body interaction, and ε a single-particle
energy. In the full problem, there are many such quantities with various orbital indices that are summed over, but
we omit them here for the sake of clarity.

While the AFMC technique does not result in a complete solution to the many-body problem in the sense of giving
all eigenvalues and eigenstates of H, it can result in much useful information. For example, the expectation value of
some observable Ω can be obtained by calculating

〈Ω〉 = Tr e−βHΩ

Tr e−βH
. (224)

Here, β ≡ T−1 is interpreted as the inverse of the temperature T , and the many-body trace is defined as

TrX ≡
∑

i

〈i|X|i〉 , (225)

where the sum is over many-body states of the system. In the canonical ensemble, this sum is over all states with a
specified number of nucleons (implemented by “number projection”), while the grand canonical ensemble introduces
a chemical potential and sums over all many-body states.

In the limit of low temperature (T → 0 or β →∞), the canonical trace reduces to a ground state expectation value.
Alternatively, if |Φ〉 is a many-body trial state not orthogonal to the exact ground state, |Ψ〉, then e−βH can be used
as a filter to refine |Φ〉 to |Ψ〉 as β becomes large. An observable can be calculated in this “zero temperature” method
as

〈Φ|e− β
2HΩe−

β
2H |Φ〉

〈Φ|e−βH |Φ〉 −→β→∞ 〈Ψ|Ω|Ψ〉
〈Ψ|Ψ〉 . (226)

If Ω is the hamiltonian, then (226) at β = 0 is the variational estimate of the energy, and improves as β increases. Of
course, the efficiency of the refinement for any observable depends upon the degree to which |Φ〉 approximates |Ψ〉.

Beyond such static properties, e−βH allows us to obtain some information about the dynamical response of the
system. For an operator Ω, the response function RΩ(τ) in the canonical ensemble is defined as

RΩ(τ) ≡
Tr e−(β−τ)HΩ†e−τHΩ

Tr e−βH
≡ 〈Ω†(τ)Ω(0)〉, (227)

where Ω†(τ) ≡ eτHΩ†e−τH is the imaginary-time Heisenberg operator. Interesting choices for Ω are the annihiliation
operators for particular orbitals, the Gamow-Teller, M1, or quadrupole moment, etc. Inserting complete sets of
A-body eigenstates of H ({|i〉, |f〉} with energies Ei,f) shows that

RΩ(τ) =
1

Z

∑

if

e−βEi |〈f |Ω|i〉|2e−τ(Ef−Ei), (228)

33

where Z =
∑

i e
−βEi is the partition function. Thus, RΩ(τ) is the Laplace transform of the strength function SΩ(E):

RΩ(τ) =

∫ ∞

−∞

e−τESΩ(E)dE ; (229)

SΩ(E) =
1

Z

∑

fi

e−βEi |〈f |Ω|i〉|2δ(E − Ef + Ei) . (230)

Hence, if we can calculate RΩ(τ), SΩ(E) can be determined. Short of a full inversion of the Laplace transform (which
is often numerically difficult), the behavior of RΩ(τ) for small τ gives information about the energy-weighted moments
of SΩ. In particular,

RΩ(0) =

∫ ∞

−∞

SΩ(E)dE =
1

Z

∑

i

e−βEi |〈f |Ω|i〉|2 = 〈Ω†Ω〉A (231)

is the total strength,

−R′
Ω(0) =

∫ ∞

−∞

SΩ(E)EdE =
1

Z

∑

if

e−βEi |〈f |Ω|i〉|2(Ef − Ei) (232)

is the first moment (the prime denotes differentiation with respect to τ).
It is important to note that we usually cannot obtain detailed spectroscopic information from AFMC calculations.

Rather, we can calculate expectation values of operators in the thermodynamic ensembles or the ground state.
Occasionally, these can indirectly furnish properties of excited states. For example, if there is a collective 2+ state
absorbing most of the E2 strength, then the centroid of the quadrupole response function will be a good estimate of its
energy. But, in general, we are without the numerous specific excitation energies and wavefunctions that characterize
a direct diagonalization. This is both a blessing and a curse. The former is that for the very large model spaces of
interest, there is no way in which we can deal explicitly with all of the wavefunctions and excitation energies. Indeed,
we often don’t need to, as experiments only measure average nuclear properties at a given excitation energy. The
curse is that comparison with detailed properties of specific levels is difficult. In this sense, the SMMC method is
complementary to direct diagonalization for modest model spaces, but is the only method for treating very large
problems.

B. The Hubbard-Stratonovich transformation

It remains to describe the Hubbard-Stratonovich “trick” by which e−βH is managed. In broad terms, the difficult
many-body evolution is replaced by a superposition of an infinity of tractable one-body evolutions, each in a different
external field, σ. Integration over the external fields then reduces the many-body problem to quadrature.

To illustrate the approach, let us assume that only one operator O appears in the hamiltonian (223). Then all
of the difficulty arises from the two-body interaction, that term in H quadratic in O. If H were solely linear in O,
we would have a one-body quantum system, which is readily dealt with. To linearize the evolution, we employ the
Gaussian identity

e−βH =

√

β | V |
2π

∫ ∞

−∞

dσe−
1
2β|V |σ2

e−βh; h = εO + sV σO . (233)

Here, h is a one-body operator associated with a c-number field σ, and the many-body evolution is obtained by
integrating the one-body evolution Uσ ≡ e−βh over all σ with a Gaussian weight. The phase, s, is 1 if V < 0 or i
if V > 0. Equation (233) is easily verified by completing the square in the exponent of the integrand; since we have
assumed that there is only a single operator O, there is no need to worry about non-commutation.

For a realistic hamiltonian, there will be many non-commuting density operators Oα present, but we can always
reduce the two-body term to diagonal form. Thus for a general two-body interaction in a general time-reversal
invariant form, we write

H =
∑

α

(

ε∗αŌα + εαOα
)

+
1

2

∑

α

Vα
{

Oα, Ōα
}

, (234)

34

where Ōα is the time reverse of Oα. Since, in general, [Oα,Oβ] 6= 0, we must split the interval β into Nt “time slices”
of length ∆β ≡ β/Nt,

e−βH = [e−∆βH]Nt , (235)

and for each time slice n = 1, . . . , Nt perform a linearization similar to Eq. 233 using auxiliary fields σαn. Note that
because the various Oα need not commute, the representation of e−∆βh must be accurate through order (∆β)2 to
achieve an overall accuracy of order ∆β.

We are now able to write expressions for observables as the ratio of two field integrals. Thus expectations of
observables can be written as

〈Ω〉 =
∫

DσWσΩσ
∫

DσWσ
, (236)

where

Wσ = GσTrUσ ; Gσ = e−∆β
∑

αn
|Vα||σαn|

2

;

Ωσ =
TrUσΩ

TrUσ
; Dσ ≡

Nt
∏

n=1

∏

α

dσαndσ
∗
αn

(

∆β|Vα|
2π

)

, (237)

and
Uσ = UNt

. . . U2U1 ; Un = e−∆βhn ;

hn =
∑

α

(ε∗α + sαVασαn) Ōα + (εα + sαVασ
∗
αn)Oα . (238)

This is, of course, a discrete version of a path integral over σ. Because there is a field variable for each operator at
each time slice, the dimension of the integrals Dσ can be very large, often exceeding 105. The errors in Eq. 236 are
of order ∆β, so that high accuracy requires large Nt and perhaps extrapolation to Nt =∞ (∆β = 0).

Thus, the many-body observable is the weighted average (weightWσ) of the observable Ωσ calculated in an ensemble
involving only the one-body evolution Uσ. Similar expressions involving two σ fields (one each for e−τH and e−(β−τ)H)
can be written down for the response function (227), and all are readily adapted to the canonical or grand canonical
ensembles or to the zero-temperature case.

An expression of the form (236) has a number of attractive features. First, the problem has been reduced to
quadrature—we need only calculate the ratio of two integrals. Second, all of the quantum mechanics (which appears
in Ωσ) is of the one-body variety, which is simply handled by the algebra of Ns × Ns matrices. The price to pay is
that we must treat the one-body problem for all possible σ fields.

C. Monte Carlo quadrature and the sign problem

The manipulations of the previous sections have reduced the shell model to quadrature. That is, thermodynamic
expectation values are given as the ratio of two multidimensional integrals over the auxiliary fields. The dimension D
of these integrals is of order N 2

sNt, which can exceed 105 for the problems of interest. Monte Carlo methods are the
only practical means of evaluating such integrals. In this section, we review those aspects of Monte Carlo quadrature
relevant to the task at hand.

We begin by recasting the ratio of integrals in Eq. (236) as

〈Ω〉 =
∫

dDσPσΩσ , (239)

where

Pσ =
Wσ

∫

dDσWσ
. (240)

Since
∫

dDσPσ = 1 and Pσ ≥ 0, we can think of Pσ as a probability density and 〈Ω〉 as the average of Ωσ weighted
by Pσ. Thus, if {σs, s = 1, . . . , S} are a set of S field configurations randomly chosen with probability density Pσ, we
can approximate 〈Ω〉 as

〈Ω〉 ≈ 1

S

S
∑

s=1

Ωs , (241)

35

where Ωs is the value of Ωσ at the field configuration σs. Since this estimate of 〈Ω〉 depends upon the randomly
chosen field configurations, it too will be a random variable whose average value is the required integral. To quantify
the uncertainty of this estimate, we consider each of the Ωs as a random variable and invoke the central limit theorem
to obtain

σ2〈Ω〉 =
1

S

∫

dDσPσ(Ωσ − 〈Ω〉)2 ≈
1

S2

S
∑

s=1

(Ωs − 〈Ω〉)2 . (242)

This variance varies as S−1/2.
We employ the Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller algorithm to generate the field configurations

Os, which requires only the ability to calculate the weight function for a given value of the integration variables. This
method requires that the weight functionWσ must be real and non-negative. Unfortunately, many of the hamiltonians
of physical interest suffer from a sign problem, in that Wσ is negative over significant fractions of the integration
volume. To understand the implications of this, let us rewrite Eq. (239) as

〈Ω〉 =
∫

dDσPσΦσΩσ , (243)

where

Pσ =
|Wσ |

∫

dDσ |Wσ | Φσ
,

and Φσ = Wσ/ | Wσ | is the sign of the real part of Wσ. (Note that since the partition function is real, we can
neglect the imaginary part.) Since |Wσ | is non-negative by definition, we can interpret it, suitably normalized, as a
probability density, so that upon rewriting (239) as

〈Ω〉 =
∫

dσ |Wσ | ΦσΩσ
∫

dσ |Wσ | Φσ
=
〈ΦΩ〉
〈Φ〉 , (244)

we can think of the observable as a ratio in which the numerator and denominator can be separately evaluated by
MC quadrature. Leaving aside the issue of correlations between estimates of these two quantities (they can always
be evaluated using separate Metropolis walks), the fractional variance of 〈Ω〉 will be

σΩ
〈Ω〉 =

√

〈Ω2〉
〈ΦΩ〉2 +

1

〈Φ〉2 − 2 , (245)

which becomes unacceptably large as the average sign 〈Φ〉 approaches zero. The average sign of the weight thus
determines the feasibility of naive MC quadrature. In most cases 〈Φ〉 decreases exponentially with β or with the
number of time slices. Overcoming the sign problem in order to do meaningful research continues to this day to be
an active area of research.

XII. PROPERTIES OF ONE-FERMION OPERATORS

In this appendix, we review some of the properties of one-fermion operators relevant to Auxiliary Field Monte Carlo
methods for the shell model. A more complete discussion can be found in Koonin, Dean, Langanke, Physics Reports,
278, 2 (1997).

Consider a set of Ns single-particle states labeled by α = 1, . . . , Ns. Corresponding to each state α are anticom-
muting fermion creation (a†α) and annihilation (aα) operators that satisfy

{aα, aβ} = {a†α, a†β} = 0; {a†α, aβ} = δαβ . (246)

The associated hermitian number operators, n̂α ≡ a†αaα, are mutually commuting, and satisfy the operator identity

n̂2α = n̂α , (247)

implying that their eigenvalues are either 0 or 1; i.e., a single-particle state can either be empty or occupied. The

total number operator is N̂ =
∑

α

n̂α. The fermion vacuum, |0〉, is annihilated by all operators, aα|0〉 = 0, and so

satisfies n̂α|0〉 = 0; i.e., all single-particle states are empty.

36

A complete orthonormal basis of A-fermion states can be constructed by choosing A different single-particle states
to be occupied (let them be labeled by i = 1, . . . , A), and then constructing the Slater determinant

|Φ〉 = a†1a
†
2 . . . a

†
A|0〉 , (248)

where the product is over all occupied states and the order of the creation operators follows a fixed, predetermined
sequence. This state is an eigenvalue of each n̂i with eigenvalue 1 or 0, depending upon whether the state i is occupied
or not.

One-body operators are defined as

Ô =
∑

αβ

Oαβa
†
αaβ , (249)

where the Oαβ ≡ 〈α|O|β〉 are the one-body matrix elements. (Note that we must be careful to distinguish between

the second-quantized operator Ô and the c-number matrix of its one-body matrix elements, O.) When acting on a
determinant, a one-body operator produces a linear combination of other determinants that differ from the original
by at most the occupation number of one state.

Operators and determinants can be defined in any orthonormal single-particle basis. Suppose that there is a second
basis λµ . . . distinct from the αβ . . . basis, and let Tλα = 〈λ|α〉 be the Ns×Ns unitary matrix effecting transformations
between them. Then the creation operators transform as

a†λ =
∑

α

Tλαa
†
α (250)

and one-body matrix elements transform as

Oλµ =
∑

αβ

TλαOαβT
∗
µβ . (251)

Of particular relevance for SMMC are the exponentials of one-body operators. Consider the action of û = e−∆βĥ

on a determinant of the form (A.3), where ĥ is a one-body hamiltonian. Since the Baker-Hausdorff identity implies
that

e−∆βĥa†1e
∆βĥ =

∑

β

[

e−∆βh
]

α1
a†α ≡

∑

β

uα1a
†
α (252)

and û|0〉 = |0〉, then

û|1, 2, . . . , A〉 =
(

∑

α

uα1a
†
α

)

∑

β

uβ2a
†
β

 . . .

∑

ζ

uζAa
†
ζ

 |0〉 . (253)

Thus, the action of the exponential of a one-body operator on a determinant is to redefine the occupied states by
the linear transformation associated with u. For evolution at a finite β, we deal with products of exponentials of
one-body operators, Û = . . . û2û1; the net result of this operator on a determinant is clearly a linear transformation
of the occupied states by the matrix U = . . .u2u1. It then follows that the expectation value of Û in a determinental
trial function, as is required in the zero-temperature formalism, is

〈Φ|Û |Φ〉 = detUij , (254)

where Uij is the A×A matrix of one-body quantities, 〈i|U |j〉.
The grand-canonical trace of Û is the sum of the expectation values in all possible many-particle states:

Tr Û =

Ns
∑

A=1

TrA Û , (255)

where TrA is the canonical trace (sum over all A-particle states). The enumeration of the canonical traces is straight-
forward:

Tr0 Û = 〈0|Û |0〉 = 1

37

Tr1 Û =
∑

1

〈1|Û |1〉 = trU

Tr2 Û =
1

2

∑

12

〈12|Û |12〉 = 1

2

[

(trU)2 − trU2
]

...

TrNs
Û = detU . (256)

These can be summed into the single expression

Tr Û = det(1+U) , (257)

which can be verified by a direct expansion in powers of U. Here, the symbol tr denotes the matrix trace, while Tr
is reserved for many-body traces.

We will also be interested in the thermodynamic expectation values of few-body operators. For a one-body operator
Ω̂, we require

〈Ω̂〉 ≡ Tr Û Ω̂

Tr Û
. (258)

This expression is most conveniently evaluated by considering the operator Ûε = ÛeεΩ̂, so that

〈Ω̂〉 = d

dε
ln Tr Ûε

∣

∣

ε=0
. (259)

Since Tr Ûε = det(1 +UeεΩ) and det(A+ εB) ∼ (detA)(1 + εTrA−1
B) to linear order in ε, we have

〈Ω̂〉 = tr
1

1+U
UΩ . (260)

Similarly, the expectation value of the product of two one-body operators can be found to be

〈Ω̂′Ω̂〉 = 〈Ω̂′〉〈Ω̂〉+ tr
1

1+U
UΩ

′
Ω− tr

1

1+U
UΩ

′ 1

1+U
UΩ . (261)

XIII. SOLVING THE QUANTUM MANY-BODY PROBLEM WITH CONFIGURATION
INTERACTION (OR SHELL MODEL) TECHNIQUES

In this section we want to begin an approach to the many-body problem that is common throughout chemistry,
molecular physics, atomic physics, and nuclear physics. Starting with a collection of Slater determinants that span a
given Hilbert space, we can find the many-body wave function within that space by an expansion. Thus

| Φi〉 =
∑

j

Aji | SDj〉 , (262)

where Φi is the ith excited state of the system and Aji are amplitudes of expansion of the state i in he basis of Slater
determinant (SD) states. In this section, we will first discuss how to obtain the Hamiltonian matrix, and then we
will describe a Lanczos algorithm for finding the lowest eigenvectors and eigenvalues of the resulting matrix.

The basic anticommutators for fermions arrise from the antisymmetry of the underlying wave functions which can
be seen from

a†qa
†
p | −−〉 =| φqφp〉 = − | φpφq〉 = −a†padaggerq | −−〉 . (263)

From this relation we see that

a†pa
†
q + a†qa

†
p = 0

apaq + aqap = 0

a†paq + aqa
†
p = δpq . (264)

38

From these relationships we can begin to understand and utilize Wick’s theorem. We first note that an arbitrary
string of annihilation and creation operators can be written as a linear combination of normal ordered strings (most
of which contain reduced numbers of operators) multiplied by Kronecker delta functions. A contraction of operators
is defined as

AB = AB − {AB}ν (265)

We see how this works through a few simple examples:

apaq = apaq − {apaq}ν = 0

a†pa
†
q = a†pa

†
q −

{

a†pa
†
q

}

ν
= 0

a†paq = a†paq −
{

a†paq
}

ν
= 0

apa
†
q = apa

†
q −

{

apa
†
q

}

ν
= apa

†
q + a†qap = δpq (266)

Note that only the fourth equation above is nonzero. Also note that the normal ordering must take into account the
sign change when the normal ordering is implemented.

Wick’s theorem (G.C. Wick, Phys. Rev. 80, 268 (1950)) gives a recipe by which an arbitrary string of annihilation
and creation operators may be written as a linear combination of normal ordered strings:

ABC · · ·XY Z = {ABC · · ·XY Z}ν
+

∑

singles

{ABC · · ·XY Z}

+
∑

doubles

{ABC · · ·XY Z}ν · · · (267)

The terms ’singles’, ’doubles’, etc., refer to the number of pairwise contractions included in the sumations. {}ν refers
to the normal-ordered form of a given string.

As an example we consider the operator

Â = apa
†
qara

†
s

=
{

apa
†
qara

†
s

}

ν
+
{

apa
†
qara

†
s

}

ν
{

apa
†
qara

†
s

}

ν
{

apa
†
qara

†
s

}

ν
+
{

apa
†
qara

†
s

}

ν

−a†qa†sapar − δpqa†sar + δpsa
†
qar + δpqδrs (268)

Note, the evalution of pairwise contractions may introduce sign changes because the string of operators must be
permuted to bring the pair together before contraction. If the permutation is odd, then we pick up a minus sign. If
even, then we obtain a plus sign.

{ABCD}ν = {ADBC}ν
{ABCD}ν = −{ACBD}ν (269)

The contraction introduces a sign (−1)P where P is the number of permutations required to bring the operators into
adjacency.

How does this help us in evaluating matrix elements?

• Matrix elements of an operator may be written as vacuum expectation values.

• The composite string must be rewritten using Wick’s theorem as an expansion of normal-ordiered strings.

• The only terms that need to be retained in the string are the fully contracted ones. All other terms will give
zero.

As an exaple, let’s calculate 〈φtÂ | φu〉.

〈φtÂ | φu〉 = 〈| atÂa†u |〉 = 〈| B̂ |〉 = 〈| atapa†qara†sa†u |〉
=
{

atapa
†
qara

†
sa

†
u

}

ν
+
{

atapa
†
qara

†
sa

†
u

}

ν
+
{

atapa
†
qara

†
sa

†
u

}

ν
+
{

atapa
†
qara

†
sa

†
u

}

ν

= δtuδpqδrs + δtqδpsδru − δtqδrsδpu − δtsδpqδru . (270)

39

XIV. A SIMPLE EXAMPLE OF THE SHELL MODEL

Let’s see how one would compute the shell model Hamiltonian using nice features of the computer. Recall that our
general Hamiltonian is given by

H = H+V =
N
∑

i=1

εia
†
iai +

1

4

∑

ijkl

Vijkla
†
ia

†
jalak . (271)

We are in a basis of states in Fock space. Let’s assume a very simple problem of 2 particles in four single-particle
states. In that case, {ijkl} = 1, 2, 3, 4. The basis states for two particles are

I = 1 a†2a
†
1 | −−〉 =| 1100〉

I = 2 a†3a
†
1 | −−〉 =| 1010〉

I = 3 a†4a
†
1 | −−〉 =| 1001〉

I = 4 a†3a
†
2 | −−〉 =| 0110〉

I = 5 a†4a
†
2 | −−〉 =| 0101〉

I = 6 a†4a
†
3 | −−〉 =| 0011〉 (272)

The Hamiltonian matrix is given by

HIJ = 〈I | H | J〉 . (273)

The single particle part of the Hamiltonian will yield contributions to the diagonal terms of the Hamiltonian. For
example, the H11 term is given by ε1 + ε2. The single-particle term does not contribute to off diagonal elements of

the matrix. Let us look at one term in the two-particle sum a†1a
†
2a3a4

V1243

4 . Let’s choose I = 1 and J = 4. The term
to be worked out is

〈−− | a1a2a†1a†2a3a4a†4a†3 | −−〉
V1234
4

= −V1243
4

, (274)

where the sign comes from application of Wick’s theorem. So now, in the Hamiltonian matrix we would have
contributions from all states, but they would be mixed. When the HIJ matrix is diagonalied, the resulting wave
function will be a linear combination of Slater Determinants. Upon diagonalization, we obtain for the J th eigenvector
the following linear combination of basis states:

| ΦJ 〉 =
6
∑

I=1

AIJ | I〉 . (275)

Where A is the unitary matrix that diagonalizes H.

A. Lanczos Procedures

We now introduce a quite successful procedure for bring H into tridiagonal form and for computing the extremal
eigenvalues and eigenvectors of the matrix. We can bring H into tridiagonal form by postulating that there exists a
matrix S that enables this transformation:

S−1HS = HTD =

α0 β1
β1 α1 β2

β2 α2 β3
· · · · · · · · ·

βN−1

βN−1 αN−1

(276)

The transformation matrix S is given by

S = [φ0, φ1, · · · , φN−1] , (277)

40

where the φn are column vectors of the transformation. We can obtain equations by left multiplying S−1HS by S to
obtain

H [φ0, φ1, · · · , φN−1] = [φ0, φ1, · · · , φN−1]

α0 β1
β1 α1 β2

β2 α2 β3
· · · · · · · · ·

βN−1

βN−1 αN−1

(278)

which yields the following equations:

Hφ0 = α0φ0 + β1φ1

Hφ1 = β1φ0 + α1φ1 + β2φ2

Hφ2 = β2φ0 + α2φ1 + β3φ3

Hφj = βjφj−1 + αjφj + βj+1φj+1 (279)

Note that the last line above represents a basic Lanczos recursion relationship. We restrict the recursion by requiring
that φ0 be an arbitrary normailzed vector such that

〈φ0 | φ0〉 = 1 . (280)

From The first equation in Eq. 279, we see that a multiplication by φ0 yields

α0 = 〈φ0 | H | φ0〉 (281)

Rerrangement of the first equation yields

η1 = β1φ1 = Hφ0 − α0φ0 , (282)

where β1 is the norm of the vector: 〈η1 | η1〉 = β21〈φ1 | φ1〉 = β21 , so that

φ1 =
η1
β1

. (283)

Similarly, we can write down from the second equation in 279

β2φ2 = Hφ1 − β1φ0 − α1φ1 = η2 , (284)

from which we see the pattern that

αj = 〈φj | H | φj〉 (285)

β2j = 〈ηj | ηj〉 (286)

So we have a way to recursively solve for the eigenvalues and eigenvectors of H. The beauty of the Lanczos procedure
is that it will filter out the lowest (and highest) eigenvalues of a given Hamiltonian matrix first. So we can use the
technique to find the eigenvalues of a matrix without actually performing a complete diagonalization. This is vastly
more efficient for physical problems in which one needs to consider only the lowest eigenvalues. For example in a
configuration interaction, or shell model, problem we may only be interested in lowest few eigenvalues and eigenvectors.
The Lanzcos algorithm will obtain the lowest eigenvalue within about 50 iterations (the tridiagonal matrix will then
be 50x50), and will obtain the next eigenvalue with an additional 10 iterations.This method then becomes extremely
powerful and indeed today very large problem sizes have been solved with it. One only needs to understand the action
of H on a vector, φ in order to implement the method.

B. Using Lanczos to compute inverses

Let’s suppose we want to calculate a quantity involving the inverse of the Hamiltonian. How would one implement
the Lanczos algorithm in this case? This is a problem that often comes up in physical applications, particularly in
quantum mechanics. Let’s suppose we want to calculate the following matrix element

〈ψ0 | O†(z −H)−1O | ψ0〉 . (287)

41

We first need to choose a starting vector. Assuming that we have the ground-state eigenvector from our standard
Lanzcos algorithm, we can compute a ’door-way’ state for the inverse problem. That state is

φ0 =
O | ψ0〉

〈ψ0 | O†O | ψ0〉1/2
(288)

and φ0 is normalized. Our matrix element then becomes

〈ψ0 | O†(z −H)−1O | ψ0〉 = 〈ψ0 | O†O | ψ0〉1/2〈φ0 | (z −H)−1 | φ0〉 , (289)

where the first term on the right hand side is easy to compute, and the second term is the one we need to understand.
Let’s work on the second term. We know that

1 = (z −H)(z −H)−1

= S(z −H)S−1S(z −H)−1S−1 = SS−1

= (z −HTD)(z −HTD)
−1 (290)

We write the operator identity as a system of linear equations

N−1
∑

j=0

(z −HTD)nj(z −HTD)
−1
jp = δmp (291)

where {j,m, p} = 0, 1, · · · , N − 1. We consider the special case when p = 0. Then

N−1
∑

j=0

(z −HTD)mj(z −HTD)
−1
j0 = δm0 . (292)

This expression is in the form of a system of linear equations for the unknowns

ξj = (z −HTD)
−1
j0 for j = 0, 1, · · · , N − 1 . (293)

Thus, ξj=0 = (z −HTD)
−1
00 = 〈φ0 | (z −H)−1 | φ0〉 which is what we need.

We will use Cramer’s rule to solve this problem. Let A be an n× n non-singular matrix and let b = Rn. Let Ai be

the matrix obtained by replacing the ith column of A by b. If x is the unique solution of Ax = b, then xi =
|Ai|
|A| for

i = 1, 2, · · · , n. We can apply this to

N−1
∑

j=0

(z −HTD)mjξj = δm0 (294)

We note first that the matrix on the left hand side of Eq. 294 is

Z −HTD =

z − α0 −β1
−β1 z − α1 −β2

−β2 z − α2 −β3
· · · · · · · · ·

−βN−1

−βN−1 z − αN−1

(295)

while the right-hand side (the δ-function) is

1
0
0
0
0
0

(296)

42

Replacing the first row of z −HTD by this array yields a matrix B:

B =

1 −β1
0 z − α1 −β2
0 −β2 z − α2 −β3
0 · · · · · · · · ·
0 −βN−1

0 −βN−1 z − αN−1

(297)

From Cramer’s rule, we see that

χ0 =
detB

det(z −HTD)
. (298)

We need some notation:

D0 = det(z −HTD)

D1 = detB

Dn = determinantofthematrixobtainedfrom(z −HTD)

bydeletingthefirstncollumsandrows

χ0 =
D1

D0
(299)

From this we see that

D0 = (z − α0)D1 − β21D2

Dj = (z − αj)Dj+1 − β2j+1Dj+2 . (300)

We can therefore expand χ0. It is

χ0 =
D1

D0
=

D1

(z − α0)D1 − β21D2
=

1

(z − α0)− β21 D2

D1

=
1

(z − α0)− β2
1

(z−α1)−β2
2

D3
D2

=
1

(z − α0)− β2
1

(z−α1)−
β2
2

(z−α2)−
β2
3

(z−α3)−β2
4
···

(301)

So, we have χ0 and hence the quantity we were looking for 〈ψ0 | O†(z − H)−1O | ψ0〉 = 〈ψ0 | O†O | ψ0〉χ0. Note,
that this is quite a convenient way to obtain information about the inverse of the matrix.

XV. RUNGE-KUTTA METHODS

One can write down many algorithms that will integrate differential equations. Many of the examples in the first
part of this course were explicit methods. Implicit integration techniques require knowledge of a function beyond the
domain at which it has currently been computed. This requires one to generate an educated guess of the function at
the next integration point. A very convenient class of methods are the Runge-Kutta algorithms. We will derive the
second-order Runge-Kutta algorithm, and then state a few higher-order variants.

Let’s start with a function

dy

dx
= f(x, y) , (302)

that we want to integrate forward in y. We know something about the past history of this function at points yn,
yn−1, yn−2,.... We can integrate one step of the differential equation exactly to obtain

yn+1 = yn +

∫ xn+1

xn

f(x, y)dy . (303)

43

Of course, the problem is that we do not know f over the interval of integration. Let’s approximate f in the integral
by its Talyor series expansion about the mid-point of the integration interval. Then

yn+1 = yn + (∆y)f
(

xn+1/2, yn+1/2

)

+O((∆y)3) (304)

where the error comes from the quadratic terms in the Talor series, and the linear term integrates to zero. Although
this equation apparently requires the value of yn+1/2 on the right-hand side, this is not the whole story. The error is

already O((∆y)3) so that an approximation to yn+1 whose error is O((∆y)2) is fine to use. Euler’s method provides
this:

yn+1 = yn + (∆y)f(xn, yn) +O((∆y)2) . (305)

Let us define k to be an intermediate approximation to twice the difference between yn+1/2 and yn. Then, the following
two-step procedure gives yn+1 in terms of yn:

k = (∆y)f(xn, yn) (306)

yn+1 = yn + (∆y)f(xn + (∆x)/2, yn + k/2) +O((∆y)3) . (307)

This is the second-order Runge-Kutta algorithm. It embodies the general idea of substituting approximations for the
values of y into the right-hand side of implicit expressions involving f . It places no special constraints on f such as
easy differentiability or linearity in y. It also uses the value of y at only one previous point, in contrast to higher
order difference methods that require more history in y. It does require the evaluation of f twice.

There are higher-order Runge-Kutta methods as well. A third-order algorithm that is O(∆y)4) accurate is

k1 = (∆y)f(xn, yn)

k2 = (∆y)f(xn + (∆x)/2, yn + k1/2)

k3 = (∆y)f(xn + (∆x), yn − k1 + 2k2)

yn+1 = yn +
1

6
(k1 + 4k2 + k3) +O((∆y)4) (308)

A fourth-order algorithm, which requires f to be evaluated four times apparently gives the best balance between
accuracy and computational effort. It is given by:

k1 = (∆y)f(xn, yn)

k2 = (∆y)f(xn + (∆x)/2, yn + k1/2)

k3 = (∆y)f(xn + (∆x)/2, yn + k2/2)

k4 = (∆y)f(xn + (∆x), yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) +O((∆y)5) . (309)

