
Computational Methods: Homework 2: Hartree-Fock

D. J. Dean
(Dated: January 31, 2005)

Homework is due on 26 February.

I. THE SCIENCE PROBLEM

We will consider a slab of nuclear matter, infinite in the x-y direction, but of finite extent in the z-direction. We
will use a density-dependent one-body potential (of Skyrme type), and we will solve the coupled nonlinear differential
equations using lattice methods. A full exposition of this kind of calculation can be found in an excellent and seminal
paper on nuclear collisions by Bonche, Koonin, and Negele, Phys. Rev. C13, 1226 (1976) from which we are working.

The HF equations are
[

− h̄2

2m
∇2~r +W (z)

]

ψi(~r) = εiψi(~r) . (1)

This equation has separable solutions in ~r⊥ and z. The density-dependent potential is given by

W (z) =
3

4
t0ρ(z) +

3

16
t3ρ

2(z) + 2πa2V0

∫

∞

−∞

dz′ρ(z′) exp (− | z − z′ | /a) (2)

where the parameters t0, t3, a, and aV0 are chosen to reproduce properties of nuclear matter (saturation density
and binding energy) and the measured skin thickness in nuclei (this is the Yukawa term). These parameters are
t0 = −497.726 MeV-fm3, t3 = 17270 MeV-fm6, aV0 = −166.9239 MeV-fm, and a = 0.45979 fm.

Equations 1 are separable, so that the energy εi = εnk⊥ and the single-particle wave functions are given by

ψi(~r) = ψnk⊥(~r) =
1√
Ω

exp
(

i~k⊥ × ~r⊥
)

φHF
n (z) , (3)

with the normalization
∫

∞

−∞

| φHF
n (z) |2 dz = 1 . (4)

These wave functions are the solution of the one-dimensional equation
[

− h̄2

2m

d2

dz2
+W (z)

]

φHF
n (z) = εnφ

HF
n (z) . (5)

The single-particle energy from Eq. 1 is given by

εnk⊥ = en +
h̄2

2m
k2
⊥
≤ εF , (6)

where εF is the Fermi energy of the system. Thus

| ~k⊥ |<
[

2m

h̄2
(εF − εn)

]1/2

= kmax(n) . (7)

So, each φn is associated with the plane waves of transverse momentum within a circle in the ~k⊥ plane of radius
kmax(n). The fermi energy is given implicitly by the size of the slab we want to construct.

The density is

ρ(z) = 4
∑

n,k⊥

| ψnk⊥(~r) |2 (8)

= 4
∑

n=occupied

| φHF
n (z) |2

∫ kmax(n)

0

d2k⊥
(2π)2

(9)

=
∑

n=occupied

| φHF
n (z) |2 k

2
max(n)

π
(10)

=
∑

n=occupied

An | φHF
n (z) |2 . (11)



2

We define An as

An =
k2max(n)

π
=

2m

h̄2
(εF − εn) , (12)

and we note that

A =

N
∑

n=1

An =

N
∑

n=1

2m

πh̄2
(εF − εn) . (13)

By using the fact that εN+1 > εF we can solve Eqn. 13 implicitly. Thus, the solution of Eqn. 13 also yields the value
of N .

The energy per unit area is given by

E

Ω
=

h̄2

2m

N
∑

n=1

An

∫
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| dφ
HF
n (z)

dz
|2 +

N
∑
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4m
πA2n

+
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∫

∞

−∞

t0ρ
2(z)dz +

t3
16

∫

∞
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ρ3(z)dz

+ πa2V0

∫

∞

−∞

∫

∞

−∞

dzdz′ρ(z)ρ(z′) exp

(− | z − z′ |
a

)

(14)

II. BASIC CODE STRUCTURE

The code you will receive is set up in the following manner.

• initialization Here you read in some initial input, allocate arrays, and initialize several variables. For example,
the initial density is

ρ0(z) =

[

1 + exp

( | z | −L
a0

)]−1

(15)

where we choose L = 5 fm and a0 = 0.5 fm. We normalize the density to the A that we input. Typical values
of A range from 0.5 (for oxygen) to 2.5 (for lead).

• We then iterate the solutions.

– Build from the initial density a solution to the Helmholtz equation. Call this term yukawa.

– Once you have yukawa and ρ, build the hamiltonian matrix.

– Diagonalize the hamiltonian matrix.

– Reorder the eigenvalues (lowest to highest).

– Make a new ρ.

– Calculate the energy density (you have to develop this)

– Test for convergence by comparing the present energy density with the previous one (you have to implement
this).

III. YOUR MISSION

• Familiarize yourself with this code. You want to make a subroutine that calculates the energy (see Eq. 14) and
include an iteration.

• Once you have a running code, you will want to try a few examples for A = 0.5, 1.0, 1.5, 2.0. Make plots of the
density for each case. What are the single-particle energies below the εF (put them into a table). What is the
E/Ω for each case? Try to reproduce the features of Fig.2 in the BKN paper.

STOP HERE
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• We are going to implement time dependence into this code.You will need to review the notes on time-dependent
evolution for this part. In order to obtain time-dependence you will need to do several things.

– You need to set up a new vector that is a complex*16 variable and store in it the real*8 wave functions
that were generated in the static case. You could call it psinc or something like that.

– You need to write a time-evolution subroutine. This subroutine will evolve the following equation

ih̄
dφn(z, t)

dt
=

(

− h̄2

2m

∂2

∂z2
+W (z, t)

)

φn(z, t) , (16)

with φn(z, t = 0) = φHF
n (z) times a boost term (see below). W (z, t) is given in Eq. 2 except now the

densities in that equation are time dependent:

ρ(z, t) =
∑

n=occupied

An | φn(z, t) |2 , (17)

– You need to “boost” your static solution. This is done by introducing a common phase factor into all
single-particle wave functions such that

φn(z, t = 0) = φHF
n (z) exp(ikz) , (18)

which yields a total energy per particle of

E

Ω
=
EHF

Ω
+A h̄

2k2

2m
. (19)

The total energy involves both the internal energy (EHF ) and the total kinetic energy (the second term
above) in the lab frame of the nucleus. You need to make a subroutine that will boost your original slab
to some velocity. You can test your time-dependent code by a) plotting the density as a function of time
(it will move once boosted) b) calculating the internal energy, which should remain constant as a function
of time.

• You are now in a position to begin a symmetric nuclear collision (with A = 1.4 fm−1, and moving toward each
other with a speed corresponding to a kinetic energy of E/A = 0.5 MeV, and 3.5 MeV. You first perform a static
calculation on a mesh that goes from z = −30 fm to z = 30 fm. You place two nuclei on that mesh separated
by several fermi. (You can do this by setting up the appropriate initial condition.) Then you boost the nuclei
so that they move toward eachother in time (boost one with +k and the other with −k momentum.

• You should choose ∆z = 0.2 fm, and ∆t ≤ ∆z
4vmax

, where vmax can be calculated from equation 5.2 in the BKN
paper.

• Can you reproduce Figs. 7 and 9 from the BKN paper?

• Can you find a range of kinetic energies for which the two nuclei don’t appear to separate (this is called the
fusion window)?

• What happens at higher collision energies (say E/A = 50 MeV)?


