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Homework is due during Final Exam Period.

I. THE SCIENCE PROBLEM : ROTATING BOSE-EINSTEIN CONDENSATES

The study of vortices in dilute atomic Bose-Einsetein condensates constitutes our final project in this class. The
scientific problem is detailed in the paper: D.J. Dean and T. Papenbrock, Phys. Rev. A 65, 043603 (2002). You will
have an opportunity to investigate the methods discussed in this paper during the course of the project.

We are working with bosons here. Boson wave functions exhibit symmetry under interchange of any two particles,
so that
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Therefore, boson creation and annihilation operators obey the following relationships.
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We can place more than one boson in a given state. Let n; be the number of bosons with angular momentum j in
a system. The wave function in Fock space will then be represented as
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Operators for the number of particles, IV, and the angular momentum L are given by
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The paper asks about the stability of the one-vortex state (where L/N = 1) against thermal fluctuations. Small
systems do not exhibit phase transitions. Nevertheless, finite systems may display precursors of phase transitions. By
finding the distribution of zeros of the partition function in the complex plane, we should be able to deduce the order
of the phase transition in an infinite system based on calculations performed in a finite system.

Basis states of the system can be constructed for N = L. As an example, consider the system with N = 6 particles.
Several of the basis states are
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The Hamiltonian of an N-boson system with contact interaction reads
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Zeros of the partition function (or poles of the specific heat) may be found by looking at the partition function in

the complex plane. We accomplish this by transforming variables. B = 3 + i7. The partition function then becomes

= _exp(-BE) . (7)



Zeros of the partition function are determined conveniently by locating the poles of the specific heat which is given
by
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One can characterize the phase transitions of the system through constructing some simple quantities. The density
of zeros in the vicinity of a given 7 is given by
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with k = 2,3,4,...A. A simple power law describes the density of zeros for small 7, namely ¢(7) ~ 7¢. Using only
the first three zeros yields
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Finally, the derivative near the real axis is given by
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II. WHAT YOU NEED TO DO

This problem involves two major parts. The first part is to construct an algorithm that generates the Hamiltonian
matrix for the system of bosons.

e You need to construct the Hamiltonian matrix H;; where I represents a particular basis state of the problem.

e Once you have the Hamiltonian matrix, you can move to a calculation of eigenvalues of the matrix. You can
use the Lanzcos algorithm for that purpose. You will need to calculate at least 200 states for larger systems
that we will be working with.

e Once you have the eigenvalues, you can then find the zeros of the partition function. For a system of N = 30
and IV = 40 particles, you should be able to reproduce the Fig. 1c and Fig. 2a of the paper.

e For the N=40 system, can you extract the 71, v and a as shown in Table I of the paper?

e Based on your calculations and figures, can you give a physical interpretation of the two different phases that
the system would find itself in? Does the system ’remember’ in which state it exists for a very long or very short
time? (Recall that the 7 direction is a direction in time.)



