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9.A. Research Objectives 
 
Our proposed INCITE research has three goals:  

• Our main goal is to develop an understanding of the role of three-body nuclear interactions in nu-
clei into the iron region using nuclear Coupled Cluster algorithms.  

• We will also utilize computational resources to understand the deformation and thermal proper-
ties of nuclei in the mass 90-120 region using quantum Monte Carlo algorithms.  

• We will also develop a microscopic description of bulk properties of nuclei throughout the nu-
clear chart using a nuclear density functional approach.  

In each case, significant computational resources are required to make progress within the next three 
years, and particularly in FY06. We will describe in the following subsections the scientific objectives of 
the three research areas.  
 
9.A.1. Nuclear Coupled Cluster Theory (85% of total project)  
 
During the last three years we have developed a set of powerful theoretical tools [1,2,3] for the descrip-
tion of nuclear properties in a many-body framework known as coupled-cluster theory [4,5]. The need for 
this work is evident from the fact that other ab initio techniques, such as the Green’s Function Monte 
Carlo methods [6] and the no-core shell model techniques [7] have reached or will soon reach their limits 
of applicability due to the exponential growth in computational need of these techniques when one in-
creases particle number. We are developing new ab initio methods that will overcome this difficulty and 
allow for a treatment of medium mass nuclei (with up to 100 nucleons).   

One of the most promising ab initio microscopic theories that can potentially provide a highly ac-
curate description of a variety of many-body physical systems, as small as atomic nuclei and as large as 
polyatomic molecules, as weakly bound as van der Waals molecules and as strongly bound as atomic nu-
clei, is coupled-cluster theory.  We believe that coupled-cluster theory offers a significant path forward 
for studying nuclear properties on an ab inito footing far from stability and in mass regions relevant to the 
RIA experimental programs. While coupled-cluster theory was originally introduced in nuclear physics, 
it's applications to nuclei have been sporadic [8,9]. We perform this work in collaboration with M. Hjorth-
Jensen (Oslo) and P. Piecuch (Michigan State University).  

While we have written codes specifically tailored for the nuclear many-body problem, we have 
utilized the significant developments of coupled-cluster theory that have occurred in quantum chemistry 
[10, 11, 12, 13, 14,15,16]. With application of these techniques to the nuclear problem, we are now in a 
position to calculate ground, excited, closed-shell, and open-shell, non-degenerate and quasi-degenerate 
states of nuclei and certain nuclear properties. We begin in coupled-cluster theory with a reference Slater 
determinant Φ on which we operate with the exponential of a cluster operator, T which is a hole-
particle cluster operator with 1-body, 2-body, and up to A-body components. The similarity-transformed 
Hamiltonian )exp()exp( THTH −=  forms the basic ingredient of the coupled-cluster method. With it, 

one may calculate the expectation of the energy in the reference state ΦΦ= HE  and the amplitudes 

of the cluster operators may be found through solving the coupled non-linear algebraic equa-
tions ΦΦ= Hij

ab
...
...0 , where ...

...
ij
abΦ  is an n-particle-n-hole Slater determinant built upon the reference 

state. Here (i,j) are orbital labels below the Fermi surface and (a,b) those above the Fermi surface. If we 
truncate the T operator at the T1 and T2 level (up to two-particle-two-hole correlation amplitudes) then we 
have coupled-cluster theory in singles and doubles (CCSD), while truncation at the T3 level yields 
CCSDT (T=triples), etc. Furthermore, if we diagonalize H in the space of 1p-1h and 2p-2h excitations 
we arrive at equation-of-motion CCSD (EOMCCSD) which enables investigations of excited state infor-
mation for those states that are principally 1p-1h in character.  The CCSD methods scale computationally 
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as 42
uo nn where 0n is the number of single-particle orbitals below the Fermi surface, and un is the number 

of orbitals above the Fermi surface. Thus, both CCSD and EOMCCSD have 6N  scaling with system 
size.  

Full CCSDT calculations [17] are much more expensive methods and scale as 8N with system 
size. An accurate method based on moments of the similarity-transformed Hamiltonian has recently been 
developed. This non-iterative completely renormalized (CR) method allows for corrections to CCSD en-
ergies at the triples level and scales as 7N . We have employed these methods, known as CR-CCSD(T) for 
the ground state and CR-EOMCCSD(T) for excited states [18,19] for both test calculations in 4He and 16O 
and converged calculations of 16O.  

In the 4He test case, we compared to exact Hamiltonian diagonalization calculations in a small 
space of four oscillator shells. We found that the CR-CCSD(T) and CR-EOMCCSD(T) methods obtain 
ground- and excited- energies within 0.05 MeV of the exact solution in a small model space. From this 
study we also saw that, when two-body interactions are employed, triples corrections to the ground-state 
energy are very small (amounting to less than 1% of the total binding energy in 16O). We also found that 
nucleon-nucleon interactions alone are unable to obtain either the ground-state binding energy or the ex-
cited state structure of the lowest 1p-1h states in 16O.  The calculations in [1, 2, 3] pushed technology in 
an incredible way: we can now perform both ground and excited state coupled-cluster calculations (using 
CCSD and CR-CCSD(T) methods) in 16O with up to 8 complete oscillator shells. These calculations are 
converged in model-space and oscillator energy, with a small parameter dependence on the G-matrix 
starting energy. Our excited state calculations are also converged. We also are able to compute one- and 
two-body density matrices in order to obtain nuclear properties such as the nuclear charge radius and elec-
tron-scattering form factor.   Our INCITE computational work will move along the following lines.  

Three nucleon forces: The role and importance of the three-nucleon force (TNF) for light nuclei 
with mass A<=12 is well established by now. We recall that TNFs typically account for additional bind-
ing energy (in conjunction with bare two-nucleon potentials), and also change the level ordering. How-
ever, the form of the TNFs is less well understood. Current formulations of TNFs are motivated by ideas 
from effective field theory and from two-pion exchange, and coupling constants are typically determined 
by fitting spectroscopic data of light nuclei. For a better determination of the TNF it is thus important to 
test TNFs in heavier systems within ab-initio structure calculations.  Coupled cluster theory is a promis-
ing method for this endeavour as its computational cost scales much more gently with increasing system 
size than GFMC or NCSM.  

In a first step, we will treat Hamiltonians with TNFs at the CCSD level, with approximate correc-
tions for three-body clusters.  We derived and implemented the coupled cluster equations including a TNF 
[20]. This is truly new ground, and our results might also prove useful for quantum chemists and con-
densed matter theorists as effective three-body forces are also generated within molecules and solids 
when model space truncations are taken into account. For the derivation of the CCSD equations we ex-
tended diagram factorization techniques from quantum chemistry. These techniques yield a very compact 
form of the resulting equations.  The second step consists of the efficient numerical implementation of the 
CCSD equations. This implementation is directly based on the factorized form of the CCSD equations for 
computations on parallel architectures. In the third step, we will perform structure calculations based on 
TNFs. Our calculations will be based on different two- and three-nucleon forces and target different nu-
clei. As examples we mention Vlowk with its TNF obtained from fit to triton and the alpha particle, G-
matrix based two-body forces from bare potentials augmented by the Urbana and/or Tucson-Melbourne 
TNFs, and effective Hamiltonians that originate from similarity transformed bare interactions. Nuclei of 
interest will be Oxygen-16, mid-shell nuclei like Silicon-28, and possibly heavier nuclei like Calcium-40. 
We will also study the corresponding neighbor nuclei which differ by one in their mass.  

The results will indicate (i) what part of the structure in heavier systems is affected by the TNF, 
and (ii) enable a better determinion of the TNF itself through possible deviations between theory and ex-
periment. Another important question concerns computational reductions of the TNF. Studies within the 
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NCSM show that those three-body matrix elements which can be written as density dependent two-body 
matrix elements are the most important ones. Insight in this matter will enable us to extend calculations 
with TNF to larger model spaces, and might also help us to understand effective two-body interactions in 
traditional shell-model problems with a core.  
 
9.A.2. Auxiliary Field Monte Carlo (10% of total project) 
 
 Calculations of the structure and excitation spectra of nuclei have also been carried out using 
Hamiltonian diagonalization techniques (also configuration-interaction calculations in chemistry). The 
diagonalization occurs in a model space spanned by many-body basis states. These states are usually con-
structed near the Fermi surface of a given nucleus. For example, for 54Fe, one assumes a frozen core of 
40Ca and works in the basis states of the ‘fp’ shell, which consists of the 20 single-particle neutron and 
proton orbitals above 40Ca. Application of this approximation has been extremely successful for under-
standing properties in medium-mass nuclei. As with any Hamiltonian diagonalization problem, it suffers 
from applicability when the model-space becomes too large. Present limitations are of the order of 2 bil-
lion basis states. For a review, see [21]. 

Medium-mass nuclei in the A=80-120 region are beginning to be explored using realistic shell-
model interactions projected into a given set of single-particle basis states that lie near the fermi surface.  
We turn to the very successful Shell Model Monte Carlo (SMMC) method [22] which recasts the interact-
ing shell model problem into a multi-dimensional integration problem. Importantly, the SMMC method 
also enables studies of thermal nuclear properties important in various contexts. These methods are based 
on a Monte Carlo evaluation of the path integral obtained by a Hubbard-Stratonovich transformation of 
the imaginary-time evolution operator. The many-body problem is thus reduced to a set of one-body prob-
lems in fluctuating auxiliary fields [23]. The SMMC method has recently been used in conjunction with 
electron-capture calculations during core collapse [24]. We are also investigating the ground-state struc-
tural properties of nuclei in the mass 80 region within the fp-gds model space [25], and their thermal 
properties [26]. By FY06 we will have completed a study of the rotational properties of N=40 nuclei as 
well.  

With the exception of rare earth studies (see, e.g., [27]), SMMC calculations were traditionally 
performed in shell model spaces for which the neutrons and protons occupied the same single-particle 
orbitals and for which the interaction maintained good isospin. We have relaxed these restrictions in the 
recent thesis work of Cem Ozen. Dr. Ozen has developed a working pn-SMMC code and is now calculat-
ing nuclear properties in the Zr and Mo isotopes above the 88Sr core. We are using realistic interactions 
[28] developed for this model space. The pn-SMMC results agree with standard diagonalization results 
the region [29] for nuclei that have only a few valence nucleons.  

By performing this effort, we will be able to investigate nuclear structure using the SMMC tech-
nique for a wider class of problems than we have studied before. Specifically, we will be able to study 
neutron rich nuclei more efficiently by restricting the proton space appropriately. We shall be able to use 
realistic interactions generated in the proton-neutron formalism rather than in the isospin formalism, and 
we will be able to investigate for the first time thermal properties of nuclei far from stability. Since nuclei 
that electron capture during the later stages of supernova collapse are quite neutron rich, we should for the 
first time be able to study weak processes in these nuclei using the SMMC methods.  

Another avenue of our ongoing research efforts involves circumvention of the quantum Monte 
Carlo sign problem. All realistic shell-model two-body interactions have an associated Monte Carlo sign 
problem in the SMMC method. This problem was initially overcome by extrapolation techniques [30]. 
We are investigating other ways of overcoming or at least delaying to low temperatures the sign problem. 
One promising method involves shifting the contour of integration [31] to pass through the (imaginary) 
stationary point. This stationary point is taken to be the Hartree-Fock minimum for the given nucleus. Our 
preliminary results indicate that we can reach meaningful results to about T=0.5 MeV in fp-shell nuclei 
without extrapolation. In contrast, the standard SMMC approach breaks down completely at a very high 
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temperature of T=3.0 MeV in fp-shell calculations. Once we fully test the SC-SMMC method we will 
apply it to iron group and gds nuclei. This enabling technology will allow us to calculate, for the first 
time, various nuclear properties without resorting to extrapolation techniques.  
 
9.A.3 Nuclear HFB Calculations (5% of total project) 
 

The study of nuclei far from stability is an increasingly important part of nuclear physics. The 
new experimental developments inevitably require safe reliable theoretical prediction of nuclear proper-
ties throughout the whole nuclear chart - from the proton drip-line through the beta stability line and the r-
processes path, to the neutron drip line and to the uncharted territory of super-heavy elements.  

One solution of the problem is a no-core shell-model mass table fit based on a G-matrix or some 
finite-range effective interaction. This could incorporate all required symmetries to the problem and will 
generate information for ground and excited states, electromagnetic transitions, level densities - all being 
physical quantities of crucial importance for understanding the nature of produced experimental data. Our 
coupled-cluster approach described above follows this approach and aims to extend the ab-initio descrip-
tion of nuclei from light toward medium mass and heavier nuclei. In order to gain a global picture of the 
nuclear landscape we use modern nuclear density functional theory (DFT) which is based on an Skyrme-
type functionals and solved via self-consistent Hartree-Fock-Bogoliubov (HFB) calculations. These 
methods are mainly restricted toward ground-state properties, and have already achieved a level of so-
phistication and precision which allows analysis of experimental data for a wide range of properties and 
for arbitrarily heavy nuclei. For instance, self-consistent models are now able to reproduce  measured  
nuclear binding energies  with an impressive rms error of roughly 700 keV [32]. However, much work 
remains to be done. 

The quest for the nuclear energy density functional, including dynamical effects and symmetry 
restoration, is one of the main themes and goals of the proposed project. . Developing a universal nuclear 
density functional will require a better understanding of the density dependence, isospin effects, and pair-
ing, as well as an improved treatment of symmetry breaking effects and many-body correlations. 

By employing various criteria (agreement with measured masses, radii, low-lying excited states, 
giant vibrations, rotational properties, and other global nuclear characteristics) our goal is to find an opti-
mal parametrization of the functional. During last years, our group was laying out theoretical foundations 
and constructing computational tools to tackle this ambitious task. Our load-balancing routine allows us 
to calculate the entire deformed even-even mass table in a single 24 wall-clock hour run (or approxi-
mately 4,800 processor hours on an old SP-3 at ORNL called Eagle) [33]. 

Most of the currently used Skyrme forces correctly reproduce generic trends in nuclear masses, 
but they may differ in their descriptions of other quantities. Moreover, they often significantly differ in 
parameters or coupling constants. This suggests that yet-unresolved correlations may exist between these 
parameters, and only certain combinations thereof (probably a small number of them) are important. Such 
correlations would explain the fact that widely different parametrizations lead to fairly similar results. The 
most often used families of Skyrme or Gogny interactions are nowadays considered as two particular re-
alizations of an effective interaction. The modern approach uses a formulation based on the energy den-
sity functional theory [34]. Here, one of the still unsolved questions is an appropriate selection of experi-
mental data that would allow for more-or-less unique determination of the coupling constants defining the 
energy functional. To this end, one usually uses certain constraints obtained by extrapolating nuclear data 
to an infinite system and selected data for finite nuclei. Such a strategy does not seem to converge to a 
unique solution, and leads to a plethora of parametrizations currently available in the literature. 

Recently, important indications on how to construct the nuclear energy functional have been ob-
tained within the chiral perturbation theory based on the QCD Lagrangian treated within the effective 
field theory (see, e.g., [35]). It seems that main physical features of the functional can indeed be obtained 
from such a fundamental approach.  Even if one still has to readjust and fine-tune the parameters for a 
precise description of nuclear data, one can gain an important insights into the structure of the functional, 
especially the dependence of the coupling constants on nuclear densities. 
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We are convinced that the present stage of theory requires constructing new energy density func-
tionals supplemented by a complete error and covariance analysis. We believe that it is not sufficient to 
``predict'' properties of exotic nuclei by extrapolating properties of those measured in experiment. We 
must also quantitatively determine errors related to such an extrapolation. Moreover, for an experimental 
work it is essential that an improvement gained by measuring one or two more isotopes be quantitatively 
known. From theoretical perspective, we must also know the confidence level with which the parameters 
of the functional are determined. Analysis of this type constitutes a standard approach in other domains of 
physics, but they are seldom performed in theoretical nuclear structure research. 

Up to now massive HFB calculations are mainly based on zero-range Skyrme forces.  An open 
question is whether going away from the stability line one should use the same force parameters or even 
the same effective forces. Obviously new fitting calculations are required and most probably one should 
include new terms. Present Skyrme density functionals include about 14 unknown parameters. One can 
fix about 5 of them using infinite nuclear matter properties and the rest should be fitted to known nuclear 
masses, radii and other ground state data. So, one has to fit about 10 parameters to produce the known 
2135 measured masses with the best possible accuracy. Then, one can calculate all 9200 nuclei within the 
whole mass table.  
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9.B. Significance of Research 
 
The U.S. nuclear physics community continues to pursue the development of technologies and facili-

ties that will explore unstable nuclei. The principal experimental focus of present and proposed low-
energy nuclear research facilities is on understanding nuclear properties far from stability. Information 
gleaned from experiment will complement ongoing nuclear theory efforts to understand the nuclear force, 
the mechanism of nuclear binding, and implications of nuclear theory and measurements on astrophysical 
processes. The science to be addressed by this INCITE proposal will enable us to pursue research to help 
answer several long-standing questions in nuclear theory research. Three of these questions are: How are 
nuclei assembled from their fundamental building blocks and interactions? How do complex systems 
exhibit such astonishing simplicities and regularities? How many elements and nuclei are yet to be 
discovered? These three questions for the field focus on the microscopic theory of nuclei. Nuclear 
scientists strive to derive the properties of atomic nuclei from the interactions of protons and neutrons, or 
ultimately, from quarks and gluons [1]. Indeed, nuclei are the only link between QCD and the atomic and 
macroscopic world. This approach — starting from basic components to create a complex system — is a 
common one in science and is shared by chemists and materials scientists, whose building blocks are 
atoms and molecules, and biologists and biophysicists, who work with large macromolecules like proteins 
that make up cells and complex organisms built on their constituent cells and molecules.  

Nuclear properties often display striking regularities—such as energy levels that mirror nearly perfect 
rotational motion—which point to the purity of particular quantum states. Likewise, nuclei display struc-
tural changes with neutron and proton number; sometimes these changes are abrupt, sometimes gradual. 
Understanding these regularities in terms of symmetries of the many-body system, and their breaking, as 
well as in a microscopic framework, is a truly challenging problem. Deficiencies in our present under-
standing have surfaced as we study nuclei that have vastly different ratios of protons to neutrons com-
pared with stable nuclei. Today, we have limited knowledge of just how many neutrons can be added to a 
stable nucleus before it becomes unable to hold more. We need new theoretical and experimental tools to 
make progress in the future. 

Nuclear structure theory strives to build a unified and comprehensive microscopic framework in 
which bulk nuclear properties, nuclear excitations, and nuclear reactions can all be described. A new and 
exciting focus in this endeavor lies in the description of exotic and short-lived nuclei. The extreme isospin 
of these nuclei and their weak binding bring new phenomena to the fore which isolates and amplifies im-
portant features of the nuclear many-body problem. The new arena of nuclei with large neutron excess is 
therefore key to building a unified theoretical foundation for understanding the nucleus in all its manifes-
tations—from the stable nuclei that exist around us to the most exotic nuclei, and even to exotic forms of 
nucleonic matter which exist, e.g., in neutron stars.  

Currently, a variety of nuclear structure research facilities within the United States, in Europe, and in 
Japan provide experimental data concerning the properties of both exotic and stable nuclei. In order to 
address astrophysical questions related to nuclear physics, the National Science Foundation (NSF) re-
cently created the Joint Institute for Nuclear Astrophysics. In addition to the current U.S. facilities, efforts 
are ongoing to build the Rare Isotope Accelerator (RIA), the next-generation low-energy nuclear facility 
in the U.S. RIA is a near-term number-three priority of the U.S. Department of Energy, Office of Science 
(and the top priority within the Division of Nuclear Physics).  

RIA and other exotic beam facilities allow unique insights into the quantum many-body nature of nu-
clei by providing access to their most extreme manifestations and by providing precise control of the 
number of neutrons in these systems. Recent theoretical and experimental achievements, coupled with the 
experimental discoveries that RIA will provide, are focusing new attention on a number of unsolved is-
sues in nuclear structure and offer excellent scientific opportunities for the next decade and beyond. 
Given the advent of research on radioactive nuclei, particularly with the coming of the RIA, it is ex-
tremely important to prepare nuclear theory for its realization.  
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Understanding nuclei and predicting nuclear behavior requires one to solve the complicated many-
body problem with de facto unknown effective interactions. While this statement is obvious, its imple-

mentation has been quite difficult due to 
the computational challenges involved. 
Various methods have been employed; 
these are broadly classified, along with 
the nuclear landscape in Fig. 1. The re-
search that will be conducted in this IN-
CITE proposal maps well onto this fig-
ure and will range in scope from theo-
retical work on effective interactions for 
nuclear structure, to the application of 
techniques for solving the nuclear many-
body problem, to the relation between 
microscopic theory and macroscopic 
symmetries. The specific methods that 
will be pursued include nuclear coupled-
cluster methods, shell-model techniques 
(quantum Monte Carlo based algo-
rithms), and self-consistent mean-field 
theories based on density-functional 
theory (inducing superconducting corre-
lations). These are invaluable tools for 

furthering our understanding of nuclear properties and will enable exciting research at the frontier of nu-
clear theory. The practical implementation of these methods requires excellent computational capabilities 
and parallel computing resources. By utilizing and developing new theory and computational tools, this 
INCITE award will provide the community with reliable, quantitative predictions for nuclear structure 
and guide future experimental efforts.  
 
9.B.1. Significance of Nuclear Coupled-Cluster work in this proposal 
 
What is the role of the three-body nuclear force on medium-mass nuclei ranging from 16O to 60Ca?  
Recent indications from GFMC and NCSM calculations indicate that three-body forces are necessary to 
obtain an understanding of light nuclear systems (through mass 12) [2,3]. Probing the effects that the 
three body forces will have on medium mass nuclei has not yet occurred, although some conjectures have 
been put forward [4]. We know from few-nucleon experimental data [5] that three-nucleon forces should 
exist and from Effective Field Theory that they are systematically derivable [6]. In fact, since the nucleon 
is a composite particle, three-body forces must exist. Our current understanding of their effect on the nu-
clear many-body problem is that they account for some fraction of the nuclear binding (not accounted for 
using bare two-body forces alone), and that they may affect spin-orbit splitting [7] in nuclei. It has re-
cently been conjectured that three-body forces will also impact orbital momentum properties of nuclei [8]. 
These properties affect sub-shell closures in systems like 22O and 48Ca. For example, 16O is a closed shell 
nuclei (the closure is N=Z=8, 0s-0p orbitals). The N=Z=20 nucleus 40Ca is also closed shell (0s-0p-1s0d 
orbitals). The sub-shell closure above 16O is at 22O (closed 0d5/2 orbital). All two-body interactions fail to 
produce the spectrum of 22O (and 48Ca which has a closed N=28 sub shell). This physics is highly relevant 
to rare-isotope nuclear properties as in the very recently measured 42Si [9]. 

The basic scientific question then is how does a realistic three-body force affect this problem? 
This is an extremely important question in nuclear structure today and can be addressed microscopically 
presently only through coupled-cluster techniques. Hence, the bulk of our proposed effort focuses on the 
issue of the role of the three-body force in medium mass nuclei.  
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9.B.2. Significance of Nuclear Auxiliary Field Monte Carlo calculations  
 
What are the thermal, rotational, and pairing properties of mass 80-120 neutron rich nuclei? 
The only viable method that includes all many-body correlations for a given nuclear system in this mass 
region and is able to probe the thermal properties of nuclear systems is the nuclear version of the Auxil-
iary Field Monte Carlo method (known as Shell Model Monte Carlo, SMMC) [10]. One particularly in-
teresting region of the nuclear chart is in the mass 80-120 (from zirconium to tin). The region is famous 
for shape-coexistence phenomena and the onset of highly deformed intrinsic ground-states [11]. An un-
derstanding of neutron capture probabilities on nuclei in this region is also important for the Science 
Based Stockpile Stewardship Program 
[12]. Very neutron rich nuclei in this 
region (for example 110Zr) lie on the 
neutron-rich r-process nucleosynthesis 
path (a stellar process that produces 
about ½ of the elements heavier than 
iron in the universe) where neutron 
capture also plays an important role. 
Since many of these capture rates 
cannot be directly measured, theory 
actually plays a key role in determin-
ing them.  
 The SMMC technique will be 
used to probe the thermal properties of 
these nuclei. As an example, we men-
tion the deformation changes that oc-
cur when one heats nuclei in this re-
gion [13]. We show in the figure de-
formation plots for several nuclei in 
the mass 70-80 region with 40 neu-
trons. In the figure, β describes how deformed the nucleus is while γ indicates whether the nucleus is ob-
late (γ=0) oblate (γ=60) or soft (uniform filling in γ). 68Ni and 70Zn are fairly spherical nuclei while 72Ge 
exhibits shape-coexistence. 80Zr is very well deformed (and prolate) as is seen in the figure. At intermedi-
ate temperatures (middle column) all nuclei retain some of their ground-state character, but the shape dis-
tributions become softer in the γ-direction. At the higher temperature of T=2.0 MeV the four N=40 sys-
tems considered become soft in both β and γ, filling uniformly the phase space in the β−γ plot.  

Of particular importance to neutron capture is the level density information, which can be directly 
probed by the SMMC method [14]. The SMMC technique is the only method that uses realistic nuclear 
interactions to probe nuclear properties as a function of temperature.  
 
9.B.3. Significance of Nuclear HFB mass-table calculations 
 
What is the nuclear energy density functional that will enable predictive mass-table calculations? 

Density functional theory (DFT) is built on theorems showing the existence of universal energy 
functionals for many-body systems, which include, in principle, all ground-state many-body correlations.  
Condensed matter physicists and computational chemists have developed such functionals for the Cou-
lomb interaction that describe properties of a wide range of systems with chemical accuracy.  

In nuclear physics, self-consistent methods based on the DFT, e.g., the Hartree-Fock-Bogoliubov 
theory with Skyrme parameterizations, have achieved a level of sophistication that allows analyses of ex-
perimental data for a wide range of properties and for arbitrarily heavy nuclei. For example, HFB calcula-
tions were recently used to explore the rich physics exhibited by super-heavy nuclei [15].  
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The achieved accuracy and predictive power of mean-field calculations, however, still leaves 
much to be desired. For example, two-neutron separation energies for Sn isotopes resulting from Hartee-
Fock-Bogoliubov calculations utilizing a wide range of Skyrme potentials match experimental data where 
it exists. However, each of the various Skyrme potentials extrapolates to different results as one advances 
to the neutron drip line where data do not exist to constrain theory. The quest for a truly universal DFT of 
nuclei, including dynamical effects and symmetry restoration, is one of the main themes of theoretical 
nuclear structure worldwide. 

To make progress, a concerted effort will be required to study new functionals when applied to 
finite nuclei and infinite or semi-infinite nuclear matter. For instance, in the particle-hole channel, one 
would like to enrich the density dependence of the effective mass in order to differentiate between its 
value in the bulk and at the Fermi surface. Another goal is to understand connections between the symme-
try energy and isoscalar and isovector mean fields, and in particular the influence of effective mass and 
pair correlations on symmetry energy versus isospin. Such an understanding will allow us to better deter-
mine isospin corrections to nuclear mean fields and energy density functionals. In the self-consistent 
method, the average nucleonic field is obtained from the nucleonic density. Consequently, in the nuclear 
state with nonzero angular momentum, the self-consistent potential acquires time-odd components. These 
terms are expected to play a significant role at very high angular momentum when the nucleus is strongly 
polarized, but they should also influence properties of beta decay and the ground states of odd-mass and 
odd-odd nuclei. Addressing these challenges will require us to exploit advances in the study of micro-
scopic inter-nucleon interactions, in the development of many-body computational techniques, and in raw 
computer power, as well as to further develop DFT itself as applied to finite, self-bound systems. 
 
We outline in 9.C our proposed calculations and computational readiness.  
                                                 
1 Nuclear Science Advisory Committee Report: Implementing the 2002 Long Range Plan (June, 2005).  
2 S.C. Pieper and R.B. Wiringa, “Quantum Monte Carlo calculations of light nuclei”, Ann. Rev. Nucl. Part. Sci. 51, 
53 (2001).  
3 P. Navratil and W.E. Ormand, “Ab initio shell model calculations with three-body effective interactions for p-shell 
nuclei”, Phys. Rev. Lett. 88, 152502 (2002); B.R. Barrett, P. Navratil, and J.P. Vary, “Large-basis no-core shell 
model”, Nucl. Phys. A704, 254c (2002).  
4 A.P. Zuker, “Three-body monopole corrections to realistic interaction”, Phys. Rev. Lett. 90, 042502 (2003). 
5 K. Ermish et al., “Systematic investigation of three-nucleon force effects in elastic scattering of polarized protons 
from deutrons at intermediate energies”, Phys. Rev. C 71, 064004  (2005).  
6 A. Nogga, S.K. Bogner, and A. Schwenk, “Low-momentum interaction in few-nucleon systems”, Phys. Rev. C 70 
O61002(R) (2004).  
7 R.B. Wiringa and S.C. Pieper, “Evolution of nuclear spectra with nuclear forces”, Phys. Rev. Lett. 89, 182501 
(2002). 
8 A. Schwenk and A.P. Zker, “Shell-model phenomenology of low-momentum interactions”, submitted to Phys. 
Rev. Lett. and arXiv/nucl-th/0501038 (2005).  
9 J. Fridmann et al., “’Magic’ nucleus 42Si”, Nature, 435, 922 (2005).  
10 For a review, see D.J. Dean and M. Hjorth-Jensen, “Pairing in nuclear systems”, Rev. Mod. Phys. 75, 607 (2003).  
11 P.-G. Reinhard, D.J. Dean, W. Nazarewicz, J. Dobaczewski, J.A. Maruhn, and M.R. Strayer, “Shape coexistence 
and the effective nucleon-nucleon interaction”, Phys. Rev. C 60, 014316 (1999).  
12 Ed Hartouni, “Stockpile stewardship and RIA”, RIA Theory Working Group Meeting, Tucson, AZ (2003), 
www.orau.org/ria/RIATG/pdfs/hartouni.pdf.  
13 K. Langanke, D.J. Dean, and W. Nazarewicz, “Thermal properties of N=40 isotones”, Nucl. Phys. A (in press, 
2005).  
14 J.A. White, D.J. Dean, and S.E. Koonin, “Shell model Monte Carlo investigation of rare earth nuclei”, Phys. Rev. 
C 61, 034303 (2000); S. Liu and Y. Alhassid, “Signature of a pairing transition in the heat capacity of finite nuclei”, 
Phys. Rev. Lett. 87, 022501 (2001).  
15 S. Cwiok, P.-H. Heenen, and W. Nazarewicz, “Shape-coexistence and triaxiality in the superheavy nuclei”, Na-
ture, 433, 705 (2005).  



Coupled-cluster approach to the ab initio nuclear quantum many-body problem 

1 

9.C. Computational Approach 
 
9.C.1. Nuclear Coupled Cluster Theory (85% of total project)  
 

Our computational methodology was briefly described. During the last three years we have de-
veloped a set of powerful theoretical tools [1,2,3] for the description of nuclear properties in a many-body 
framework known as coupled-cluster theory [4,5].  

The nuclear coupled-cluster CCSD code was written over the course of the last 3 years and was 
specifically targeted for a distributed memory environment. We could not use quantum-chemistry imple-
mentations of CC theory for a variety of reasons, including the differing types of symmetries involved in 
the calculations. We therefore wrote our own CCSD (and excited state, and triples corrections) codes. Our 
workhorse is the CCSD algorithm. We describe below its various features and the techniques used to 
solve the CCSD problem.  
• Programming languages, libraries, and other software used:  

The Nuclear CCSD code was written in Fortran90 with MPI. It contains BLAS and LAPACK routine 
calls. The code also uses parallel I/O (via MPI-IO calls). The nuclear CCSD code was built from scratch. 
Chemistry codes cannot be adapted to the nuclear problem since the nuclear forces are spin and isospin 
dependent. Thus, standard algorithmic savings in chemistry brought about by the symmetries of the Ham-
iltonian (e.g., use of a spin-orbital basis) cannot be employed for nuclei.  
• Description of the underlying mathematical formulation:  

Coupled-cluster techniques solve for ground- and excited-states of a quantum many-body system at a 
given level of many-body sophistication. Modern formulations of coupled-cluster techniques rely on a 
basis expansion as described in Section 9A.1. One solves for the excitation amplitudes within the basis. 
The equations, as described in [1] are coupled, non-linear, algebraic equations for the excitation aplitudes 
that must be solved iteratively.  A compact mathematical statement of the problem is given by the expres-
sion ( ) 0, 21 =ttf i , where the set of unknown amplitudes (one-particle-one-hole and two-particle-two 
hole excitation amplitudes t1 and t2) must be found. The equations are closed if one assumes that any 
higher order amplitudes (three-particle-three-hole amplitudes in this case) are zero.  
• Algorithms and numerical techniques employed  

The number of unknowns in these equations for 16O in 8 oscillator shells is 603,720; this number 
grows substantially for 40Ca; in 7 shells the comparable numbers are: for 16O, 345,160 unknowns, and for 
40Ca, there are 2,072,608 unknowns (the largest problem we have attempted to tackle to date). Regardless 
of the number of unknowns the number of iterations needed to obtain converged results (to six digits) ap-
parently remains fairly stable regardless of the nucleus involved. We use Moller-Plesset perturbation the-
ory [6] to obtain an initial guess for the amplitudes. We have also implemented an iterative acceleration 
technique known as direct inversion in the iterative subspace (DIIS) [7] to speed convergence. Normally 
20 or less iterations are needed to solve the equations to 10-6 accuracy.  

A complete calculation for a give nucleus proceeds in the following manner. First, one must generate 
the effective two-body interaction for the problem. The nuclear interactions typically have very repulsive 
(in some cases hard) core potentials. Bare NN potentials (which describe the two-body interactions 
among protons and neutrons) cannot be directly used in the CC approaches. One must first renormalize 
these interactions to the model-space in which one is working. This can be done in several ways including 
a standard infinite sum of ladder diagrams (the G-matrix approach [8]) a Hamiltonian similarity transfor-
mation and projection to the model-space [9], and a renormalization group (RG) method that obtains only 
the low-momentum part of the interaction [10]. This step is not numerically intensive and can be per-
formed on a small cluster or workstation. The output from this step, the effective-two body interaction, is 
then used in the CCSD approach. The RG approach, also known as Vlowk, will be utilized to investigate 
three-body effects. This particular renormalization contains a momentum cutoff parameter, and one must 
check that results are independent of this parameter when three-body forces are included.  
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Second, the two-body interactions obtained from the first step are calculated in a ‘coupled’ represen-
tation and must be decoupled. This step is performed within the parallel CCSD code. The scattering of 
two quantum-mechanical particles must conserve certain symmetries, one of which is, for example, the 
total two-particle angular momentum of incoming particles before they interact must be the same as the 
outgoing angular momentum after they interaction. In order to be used in the CCSD approach, the matrix 
elements must first be uncoupled. This procedure is performed by first reading in the coupled matrix, and 
using a master-worker algorithm to spread the work of decoupling. Once matrix elements have been de-
coupled and MPI-I/O written to a file, the resulting 4-index array of matrix elements is block-distributed 
among the processors with a MPI-I/O read. This turns out to be an extremely efficient (and crucial) part 
of the overall algorithm.  

The final step involves calculation of the CCSD amplitudes. The present code uniformly distributes 
the interaction matrix elements across processors on two of the four indices. Each processor maintains a 
complete copy of the amplitudes. Thus each processor performs a partial sum of the equations to obtain 
new amplitudes. An all-reduce (addition) is used to obtain the new copies of the amplitudes for the next 
iteration step. While the keeping one copy of the amplitudes for each processor means that as we go to 
larger model spaces, memory use becomes an issue, the overall Flops performance of the code has bene-
fited from this strategy. For non-iterative triples corrections we transport the resulting CCSD amplitudes 
and decoupled Hamiltonian to collaborators at Michigan State for analysis.  
• Parallel implementation and readiness 

The workhorse of this project is our nuclear CCSD code. It was developed on the SP-3 platform at 
NERSC (Seaborg). It has also been run on the 256 processor shared memory SGI Altix machine (RAM, 
Itanium2 processors running at 1.5 GHz) at ORNL. The computational requirements strictly scale as as 

42
uo nn where 0n is the number of single-particle orbitals below the Fermi surface, and un is the number of 

orbitals above the Fermi surface. We have checked that this scaling holds as one performs calculations in 
larger nuclei or as one increases the model space.  The EOMCCSD method also obtains this scaling.  

The code performance can be summarized by quoting a relevant number: on 100 processors of the 
SGI Altix, 0.2 Tflops of performance was obtained in N=8 shells (480 single-particle orbitals) in 16O, and 
converged calculations were obtained within 10 wall-clock hours. The per-processor performance of this 

run was 2 Gflops (34% of theoreti-
cal peak). Thus, for 16O and 480 
single-particle states, 2 Tflop-hours 
are needed to obtain a converged 
ground-state result. The conver-
gence with oscillator shells is shown 
for 16O in the Figure to the left for 
both ground and excited state calcu-
lations [3]. We note that the first 
excited lies at about twice its ex-
perimental value. The inclusion of a 
three-body interaction should sig-
nificantly improve this description. 
Part of the INCITE time will be 
used to perform additional calcula-
tions in the following nuclei: 22O, 
28Si, 40Ca, 48Ca, 60Ca, 56Ni, 42Si. As 
was mentioned in 9b, this choice of 
nuclei is motivated by the need to 
understand how three-body forces 
affect both masses, spin-orbit split-
ting, and the intruder-extruder prob-
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lem encountered when one only uses two-body NN interactions. The total computational time required for 
these calculations will be approximately 400,000 MPP1 equivalent processor hours to complete this part 
of the project. The CCSD code has been run at NERSC on up to N=7 (336 single particle orbitals) for 
40Ca. One caveat on Seaborg is that memory becomes an issue for 40Ca and above nuclei. For these nuclei, 
optimally 8 Gbytes/processor is necessary. This will require us to make extensive use of the large mem-
ory nodes on Seaborg, or to utilize fewer processors per node on the standard nodes. (We will likely find 
memory savings opportunities in the code before we compute the larger nuclear systems proposed – 60Ca 
and 56Ni.) A recent test calculation on Seaborg indicated a 379 Mflop/processor rating utilizing 4 proces-
sors per node (1024 processors total, 256 used in computing) for 40Ca. Memory requirements for lighter 
nuclei may make the XT3 at ORNL a good candidate for running some of this effort.   

In order to assess the influence of the three-body interactions on the above list of nuclei, we will first 
perform CCSD calculations with an approximate two-body equivalent of the three-body interaction. We 
will perform these calculations at two cut-off parameters. This equivalent form of the three-body interac-
tion should amount to an effort that is equivalent to the standard CCSD runs. We will require 3.2 million 
MPP equivalent processor hours to make this assessment (for both ground- and excited-state information) 
for all nuclei in our list at N=7 and for 40Ca and 42S at N=8.   

The full inclusion of the three-body interaction at the CCSD level (V3CCSD) will require signifi-
cantly more computing resources. We will first tackle this problem for the N=6 basis (224 single-particle 
states). We know that the scaling of the most expensive V3CCSD terms in the amplitude equations are of 
order 52

uo nn  and 44
uo nn  (there are likely ways to decrease these rather large factors). This scaling means 

that to investigate the effect of the three-body interaction on 16O and 22O will require approximately 
1,200,000 MPP equivalent hours.  

For this part of the project, we therefore propose the following three-year computational strategy. Our 
request is for 2.25 million MPP equivalent hours per year in FY06, FY07, and FY08. During the first year 
we will compute all nuclei in our list for the N=7 basis set (smaller basis set sizes will account for about 
20% of our request) using the approximate 3-body inclusion and test the cut-off parameter dependence in 
16O. We will also begin calculations of the V3CCSD (full inclusion of V3 at the CCSD level) equations 
for 16O. During FY07 we will complete the N=8 basis state runs, finish the V3CCSD runs for 16O and 
start the 22O V3CCSD runs. During FY08 we will complete the V3CCSD runs for oxygen and also calcu-
late, for the first time in an ab initio framework 28Si at the V3CCSD level.  

The theoretical development and implementation of the nuclear CCSD effort was originally begun 
under ORNL LDRD funds (FY02/03). ORNL SEED money funds (FY05/06) partially support our 
V3CCSD efforts. Through the LDRD and SEED funds, we have developed useful connections with 
David Bernholdt and Robert Harrison from ORNL concerning certain aspects of the numerical implemen-
tations.  

 
9.C.2. Auxiliary Field Monte Carlo (10% of total project) 
 
• Programming languages, libraries, and other software used:  

The nuclear Shell Model Monte Carlo code was written in Fortran90/95 with MPI. It contains BLAS 
and LAPACK routine calls.  
• Description of the underlying mathematical formulation:  

Monte Carlo evaluation of the path-integral requires several steps. The evolution operator is an expo-
nent of a matrix representation of the one-body Hamiltonian which describes how particles behave in the 
fluctuating fields. There are two one-body Hamiltonian matrices (one for protons and one for neutrons) 
for each time-slice of the path integral. If the imaginary time, which is measured in units of inverse en-

                                                 
1 1 An MPP hour at NERSC is equivalent to one wall clock hour, while the CCS/ORNL (the IBM Cheetah (3.5 times 
the NERSC IBM-SP) and the SGI-Altex (4 times the NERSC IBM-SP) computers are a factor of 3.5-4 faster than 
Seaborg at NERSC. 
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ergy, is taken to infinity, then we recover ground state information on the system; otherwise, we obtain 
information on the thermal average of the system. Because of the natural gap between ground- and ex-
cited-states in nuclear systems (particularly in those with an even number of particles), an imaginary time 
of 2 MeV-1 (in nuclear units) allows for ground-state calculations. The imaginary time is discretized, typi-
cally in steps of 1/32 which obtains reasonable convergence.  
• Algorithms and numerical techniques employed: 

We thus perform the following operational steps for each Monte Carlo sample. First, we generate 
the one-body Hamiltonian matrix (which depends on the fluctuating auxiliary fields), then we exponenti-
ate it to obtain the matrix representation of the evolution operator for a given imaginary time step. We 
must then multiply all such time-slices together to produce the imaginary-time evolution matrix, U. We 
must take the determinant of (1+U) in order to formulate the probability that is used to determine whether 
to accept or reject the Metropolis random walk for a given auxiliary field.  These steps are performed sev-
eral times per recorded sample to obtain statistically independent samples.  
• Parallel implementation and readiness: 

The SMMC code performs separate Metropolis random walks on each processor, making the 
code rather efficient in communications overhead. For each sample, the code performs a global reduce 
operation (this has the effect of synchronizing the code when each sample is taken). The global reduce is 
over only about 50 variables (observables such as energy, level-occupation numbers, and various transi-
tion operators).  

The SMMC code has matured significantly in the last 10 years. Published benchmarks from 1997 
indicate the average MF rating (per processor) was 36 Mflops on the IBM-SP2 Thin66. Today, the code 
(with continuing software and hardware performance enhancements) performs at roughly 300 
Mflops/processor (and up to 350 depending on the application) on Seaborg. Further enhancements beyond 
raw speed have given the code another factor of 10 in overall efficiency. Code memory requirements are 
roughly 200Mbytes/processor.  

We performed several benchmark calculations over the course of the last year using the SMMC 
code. These calculations were performed on very large systems consisting of either 30 (gds) or 50 (fp-
gds) single-particle states for both neutrons and protons. All calculations were performed on Seaborg at 
NERSC. For comparison, the corresponding matrix diagonalization that would be required in standard 
shell-model diagonalization procedures would be of rank 1.3E10 for gds or 2E16 for fp-gds. Depending 
on the type of measurements taken, the performance of the code is given in the following table (data taken 
with poe on Seaborg). I had to change from MP_PIPE_SIZE=64 to MP_PIPE_SIZE=32 to make the final 
2048 processor run.  
Processors Job size / MC samples Time to complete Speed/processor Aggregate speed 
256  Ni56, fp-gds / 5120 3.3 hours (wall)  285 Mflops  72.9 GFlops 
256 Ni68, fp-gds / 5120 3.3 hours (wall) 284 Mflops 72.7 GFlops  
256 Ni78, fp-gds / 5120 3.3 hours (wall) 283 Mflops 72.4 Gflops  
128 Ni68, fp-gds / 4096 5.8 hours (wall) 271 Mflops 34.7 Gflops 
16 Ni68, fp-gds / 32 0.5 hours (wall) 315 Mflops 5 Gflops 
512 Mo92, gds /  16384 0.7 hours (wall) 311 Mflops 159 Gflops 
1024 Mo92, gds /  32768 0.7 hours (wall) 317 Mflops 325 Gflops 
2048 (MP=16) Mo92, gds /  65536 0.9 hours (wall)  241 Mflops 493 Gflops 
2048 (MP=32) Mo92, gds / 65536 0.74 hours (wall) 298 Mflops 610 Gflops 
 
 As mentioned in 9.A.2, SMMC calculations will be used to explore the properties of nuclei in the 
mass 80-120 region. To perform one calculation for one nucleus in this region using the newly developed 
pn-SMMC technology requires 7,000 MPP equivalent processor hours. 200,000 MPP equivalent proces-
sor hours per year would then allow us to perform a fairly comprehensive study of thermal, rotational, 
pairing, and deformation properties of about 30 nuclei in this mass region. We expect significant insight 
into the nature of medium-mass neutron rich nuclei to be gained from such calculations.  



Coupled-cluster approach to the ab initio nuclear quantum many-body problem 

5 

9.C.3. Nuclear HFB Calculations (5% of total project) 
 
• Programming languages, libraries, and other software used:  

The Nuclear HFB code was written in Fortran90 with MPI. It contains BLAS and LAPACK routine 
calls.  
• Description of the underlying mathematical formulation:  

The solution of self-consistent mean-field equations for weakly bound paired nuclei requires a correct 
description of the asymptotic properties of nuclear quasiparticle wave functions. In the present implemen-
tation, this is achieved by using the single-particle wave functions of the Transformed Harmonic Oscilla-
tor, which allows for an accurate description of deformation effects and pairing correlations in nuclei arbi-
trarily close to the particle drip lines. The program uses the axially Transformed Harmonic Oscillator sin-
gle-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-
Bogolyubov Hamiltonian based on the Skyrme-forces and zero-range pairing interaction until a self-
consistent solution is found.  
• Parallel implementation and readiness: 

Presently we have a fast code for spherical HFB calculations [11] which takes almost 10 CPU 
minutes per nucleus as well as a code for axially deformed HFB calculations [12] with acceptable proces-
sor speed - about 1 CPU hour per nucleus. All CPU predictions are based on an Intel Xeon 2.8 GHz proc-
essor. On the Power-4 IBM processor (e.g. the processors in Cheetah), this code obtains 1.2 
GFlops/processor. Memory needs for these codes is small: less than 100 Mbytes. These codes are com-
pute intensive and have very little need for communications.  

Our strategy for numerical treatment of the problem is the following: 
o First step: One performs more expensive axially deformed HFB calculations for all 1754 nu-

clei with available experimental data - the resulting total energy for a nucleus can be denoted 
as ( )0βE . One also calculates the same nuclei but constrained to a spherical symmetry - the 
resulting total energy for a nucleus can be denoted as )0(E - in order to define the deforma-
tion energy )()0( 0βEEEdef −= . This generates a quasi-experimental set of data 

def
sph EEE −= expexp  which can be used on the second step. (MPP equivalent time: 14,000 

hours) 
o In the next step, one performs the fit of the energy density functional to the quasi-

experimental set of data sphEexp  for the same 1754 nuclei but using spherical HFB calculations 
which are relatively fast. If necessary, one could repeat these steps several times. (MPP 
equivalent time: 6,000 hours if one performs 10 iterations) 

o Final Step: At the end one would perform complete proton drip-line to neutron drip-line axi-
ally deformed mass table calculations. In order to have information for the ground state of 
e.g. 9200 nuclei lying between the drip lines over the range 8, ≥NZ  and 120≤Z , one 
should calculate each nucleus 3 times (starting with oblate, prolate and spherical initial condi-
tions, the ground state is the one with the lowest total energy) which make about 27600 calcu-
lations. (MPP equivalent time: 55,200 hours).  

For this part of the project, the total project time is then 75,200 MPP equivalent hours (during year 1). We 
will also investigate the feasibility of performing exact particle-number projection within the HFB 
scheme, which will begin in year 1. The total time requested to perform the mass-table analysis and to 
perform initial exact particle-number calculations is then 100,000 MPP equivalent hours per year.  
  
Suggested Implementation of this project on several platforms 
 

 The three codes described above have different computational requirements and therefore it 
would be best to run them on different machines. We believe the following breakdown would be in order.  
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The major effort in this project will be the CCSD portion with the three-body interaction study. 
This part of the project will have a major impact in the low-energy nuclear physics field and will help us 
understand the role of the three-nucleon interactions in medium-mass nuclei. The project requires ma-
chines with significant available memory per processor. We believe two machines will be in order for this 
project: a) Seaborg and its follow-on machines at NERSC, and the Cray XT3 at ORNL. While we have 
not performed tests on the XT3 at this time (the machine is not yet completely built) we believe our 
Seaborg experience should make the transition to the XT3 fairly straightforward.  

The SMMC codes require several hundred Mbytes per processor. We believe that we can opti-
mize memory for the ANL BGL machine. The code should run on that platform as fast as it runs on 
Seaborg. We have discussed with colleagues who perform Green’s Function Monte Carlo calculations on 
that machine, and they have seen performances similar to Seaborg performance. We therefore request 
200,000 BGL hours per year for this part of the project.  

The HFB codes require very little memory (about 100Mbytes for a single processor). Therefore, 
we suggest that this part of the project should be performed on the IBM Blue Gene at ANL. As is the case 
with the SMMC code, we believe that these calculations should perform at least as well as on Seaborg. 
We therefore request 100,000 BGL hours per year for this part of the project.  

Thus, while the pull-down menu on question 5 asked for one particular machine, we believe this 
project’s time should be split across several platforms. We have used Seaborg as the major platform re-
quested, although clearly, the XT3, and BGL will also be extremely useful for the project.  
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