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We will model the three-body breakup in even-Z nuclei near the proton drip line, where
the pairing between the last two protons causes the one-proton decay channel to be en-
ergetically forbidden. More precisely, our goal is to calculate the angular distribution of
protons emitted from the nucleus in a time-dependent framework. The relevant ampli-
tudes are given by the overlap at time t of the initial and final wavefunctions describing
the system. Then our task comprises three parts: the calculation of the wavefunction
describing the system in its initial state, the forward time-propagation of the initial wave-
function to some time t, and the backward time-propagation of the final wavefunction to
the same time t.

We obtain the initial wavefunction using a shell-model approach with a zero-range
effective interaction. In this model the nucleus is described as a three-body system con-
sisting of two protons interacting with each other and with a structureless core. Follow-
ing Bertsch et al.,5 we use a density-dependent, energy-cutoff delta function to simulate
the proton-proton interaction. We then solve the Hamiltonian equation by a two-particle
Green function method in coordinate space. Here we use the single-particle basis given
by the eigenstates of the shell-model Hamiltonian, consisting of a kinetic energy operator,
Woods-Saxon potential, and a spin-orbit interaction.

The forward time evolution of the two-proton system is described by the time-dependent
Schrödinger equation, which we numerically solve by using a split-operator approach.6

Since the independent degrees of freedom we are interested in are the spherical coor-
dinates r1, r2, θ = θ1 − θ2, it is convenient to write the Schrödinger equation in spherical
polar coordinates. Then, we apply each of the propagators to the wavefunction written in
a basis that is diagonal for the operator in question. Therefore we use the radial kinetic
energy propagator and the angular momentum-dependent propagator in radial and angu-
lar space, respectively, while the interaction propagator is used in coordinate space. The
appropriate basis transformations are introduced on a grid {r1i, r2j, xk}, with xm = cos(θm)
and θm = θ1i − θ2j.

Finally, we assume that the final state of the two-proton system is described by a
product of plane waves. The backward time evolution of the two-proton system is also
described by the time-dependent Schrödinger equation, where the density-dependent
effective interaction between the two-protons is now neglected. We numerically solve this
equation in a scaled system of coordinates, which has the advantage of making the theory
Galilean invariant,7 and thus eliminates the rapid oscillatory character of the solutions and
allows for very accurate numerical results.
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