
RECONSTRUCTION SOFTWARE
FOR THE PHENIX MUON IDENTIFIER

V. Cianciolo, R. J. Newby,1 J. K. Pope,1 K. F. Read, S. P. Sorensen2

We have been developing the event-reconstruction (readout simulation, road-finding,
muon identification, and level-1 trigger simulation) software for the PHENIX muon identifier
system; the software is implemented in C++ using an object-oriented approach. Figure 1
shows the class diagram.

TMuiGeometry

TMuiPanelGeo

TMuiTwoPackGeo

Contains

Contains

1..*

1

1..*

1

Contains
1

1

Contains

1

TMuiTubeGeo

Contains

1

2

TMuiChannelID

TMuiRoad

Contains

0..* 1

TMuiRawHit

Contains

1

1

TMuiRoad
Container

Contains

1

0..*

TMuiRawHit
Container

1

0..*

< 
C

on
ta

in
s

TMuiHitID

Contains

1

1

TMuiCluster
Container

TMuiCluster

Contains

< 
C

on
ta

in
s

1

0..*

1 0..*

Figure 1: MuID analysis classes.

In the process of developing the current software, we are testing it extensively using
Monte Carlo events processed through a GEANT model of the PHENIX apparatus. The
output of the GEANT model for the muon identifier system consists of the space points
where particle trajectories intersect the planes. It is the job of the readout simulation to
filter these space points and determine which two-packs were struck in the event.

The design of the software makes this calculation fairly simple: each two-pack in the
system is represented by a C++ object which contains the size, position, and orientation of



the two-pack. It is thus possible to query a two-pack object to determine whether a GEANT
space point is contained within its boundaries. Later extensions to the readout simulation
will incorporate inefficiencies and noise effects for a better approximation to the perfor-
mance of the real detector system.

The purpose of the road finder software is to associate struck two-packs with the tra-
jectory of a particle traversing the muon identifier.

The first step is finding clusters, groups of contiguous two-packs of one orientation
which all register signals in the event. Each possible combination of horizontal and verti-
cal clusters in the second and third planes is then a seed for a possible road. We project
along the straight line defined by the positions of these four clusters to the first, fourth,
and fifth planes, and attach the clusters in these planes whose positions are closest to the
intersection point of the line with the plane containing the cluster. Finally, some of these
seeds are selected as roads, based on criteria such as the projections of their straight-line
trajectories to the plane containing the nucleus-nucleus interaction point.

Preliminary studies of the performance of the road finder show efficiencies of 95% or
better for muons from J/ψ decays in “clean” events where the muons are the only particles
traversing the muon identifier. In events where these same muons are embedded in small-
impact parameter Au+Au interactions such as those that we expect to study at RHIC, the
efficiencies are nearly 90%.

Once clusters from the muon tracker system have been associated with the road (giving
us a Muon Arm track), the muon identification software attempts to determine whether
or not the particle that created the track was a muon, using the characteristics of the track:

• the magnitude of the track’s momentum,

• the last muon-identifier plane with two-packs attached to the track, and

• the maximum of the number of two-packs attached to the track in a single muon-
identifier plane.

We are currently investigating various implementations of the identification software,
beginning with a simple method based on a hard cut in this three-dimensional space. We
are also developing a more flexible method based on a three-dimensional look-up table
containing the probability that a track with given values of momentum, last plane, and max-
imum two-packs per plane is a muon.

The MUID level-1 trigger algorithm makes its decision based on the number of one-
dimensional roads that it finds. Past simulation efforts have shown that for level-1: one-
dimensional roads are sufficient, the road-finding algorithm must allow for skipped gaps
and must be dynamically steered. In hardware the level-1 road-finding algorithm will be
implemented with Boolean gates (inside field-programmable gate arrays). In the past year
we developed a modular Boolean road-finding algorithm (implementable in high-level pro-
gramming languages and in hardware). We are in the process of evaluating this algorithm.

1. University of Tennessee, Knoxville.

2. Adjunt research participant from the University of Tennessee, Knoxville.


