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Neutron Beta Decay

n → p++ e– + νe + 782 keV
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Why Study the Neutron?

The Standard Model
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Goals

Measurement of the Neutron Lifetime

Neutron Asymmetry Coefficient (a, A)

Vud

Magnetic Trapping of Neutrons

weak force parameters

BBN
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Fill and Dump

UCN
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Detect Decay Products

τn = 889.2 s ± 4.8 s

τn = 885.7 s ± 1.0 s
(wall losses)

τn = 877 s ± 10 s
(betatron oscillations)

(flux measurement)
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Magnetic Trapping of UCN

Why Trap?

• Produce UCN using 
superthermal
scattering

• Confine UCN with a 
magnetic trap

• Detect UCN by 
measuring beta-
decay rate as a 
function of time.

• Longer interaction times
•  Eliminates systematic effects present in 

previous experiments
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NIST Center for Neutron Research

20 MW split-core research reactor

Liquid hydrogen cold source

Eight cold neutron guides, one for fundamental physics

1 x 109 n/cm2/s at end of fundamental physics guide
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 Magnetic Trapping 
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 Ioffe-Type Magnetic Trap 
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 Loading the Trap 

n

ucn

phononSuperfluid Helium

Eucn = En – Ephonon

pucn = pn – qphonon
→ → →

•  Neutrons of energy E ≈ 0.95 meV (11 K or 0.89 nm) can scatter in 
liquid helium to near rest by emission of a single phonon.

•  Upscattering (by absorption of an 11 K phonon) ∝
Population of 11 K phonons ~ e–11K/Tbath
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 Detection of Trapped Neutrons

liquid helium

2He *

e–

γ – 80nm

γ – 430nm

TPB

n → p+ + e– + νe
—

•  Recoil electron creates an ionization track in the 
helium.

•  Helium ions form excited He2* molecules (ns time 
scale) in both singlet and triplet states.

•  He2* singlet molecules decay, producing a large 
prompt (<20 ns) emission of extreme ultraviolet 
(EUV) light.

•  EUV light (80 nm) converted to blue using the 
organic fluor TPB (tetraphenyl butadiene).

P. R. Huffman



Magnet form

Racetrack coil

Cupronickel tube

Acrylic lightguide

TPB-coated acrylic tube

Solenoid

Neutron shielding Collimator

Beam stop

Trapping region
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Trapping data (blue): 3He data (red):
 a = 0.16 s–1 ± 0.03 s–1 a = –0.040 s–1 ± 0.045 s–1

 C = 0.003 ± 0.007  C = –0.011 ± 0.011 
τ = 660 s +290 s/–170 s  τ = fixed at 750 s 

Total number trapped: Theory Predicts:
 N = 453 ± 100  N = 500 ± 170



How Do We Increase 
the Statistics?

• Increase the number of trapped neutrons by building 
a larger, deeper magnetic trap.  Number trapped:
– Scales with magnetic field as B 3/2

– Scales with the trap radius faster than r 2

– Scales with length 

• Increase the detection efficiency (30 % → > 90 %)
– Clear beam stop, Larger diameter cell 

• Reduce backgrounds 
– 0.9 nm neutron monochromator 
– Additional external shielding
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Larger, Deeper Magnet

• Original Magnet (demonstration of trapping):
– ØMagnet = 5.1 cm 
– ØTrap = 3.2 cm,  L = 30 cm
– BTrap  = 1.0 T, ITrap= 180 A

• New Magnet 
– ØMagnet = 10.5 cm 
– ØTrap = 8.6 cm,  L = 27 cm
– BTrap = 1.6 T,  ITrap= 225 A
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Original Apparatus 

Current Apparatus 
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Increased Detection Efficiency
• Original design: 

– TPB in polystyrene 
– Light transport via total internal reflection 
– 5 p.e. signal for 360 keV beta 
– 30 % efficiency

• New design: 
– TPB evaporated onto Gore-tex 
– Clear B2O3 beam stop 
– 30 p.e. signal for 360 keV beta 
– > 90 % efficiency



Detector calibration
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0.89 nm Monochromator
Material KC8 KC24 Fluorophlogopite

d (Å) 5.35 8.74 9.963

θBragg (°) 56.3 30.6 26.5

Measured samples:

β (°) 3.9 2.2 0.05-0.35

8.9 Å peak 70 51 30
reflectivity (%)

2 Zone Oven

TK TG

TK = 208°C TG = 320 °C
Intercalation to Stage 2 takes 4-5 Days
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0.89 nm Monochromator
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Upgrade Estimates

• Original Magnet (BTrap = 1.0 T)

# Trapped per load  

450

• New Magnet (BTrap = 1.6 T) with monochromator

# Trapped per load στn (2 cycles) 

7,500 1.8 s 
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Conclusions
• Magnetic trapping previously demonstrated: 

• 500 UCN trapped per load; 
• Polarized UCN density of 1.8 cm–3.

(Huffman et. al., Nature 403, 2000, p. 62)

• Improvements made to allow a measurement of τn:
• Larger, deeper magnetic trap;
• Monochromatic 0.9 nm beam; 
• New detection system.

• With current apparatus:  
• ~50 x detected trapped UCN (~3 x density); 
• τn measurement of ± 1 – 2 s (statistics).

• Present status:
• Monochromator characterized; 
• Dewar assembled, leak-tight, and cold; 
• Detector characterized; 
• Performing initial diagnostic runs with entire 
   apparatus.
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τn in Superfluid Helium

Idea: τn different in 4He than in vacuum

•  Changes in the phase space
– interaction of the neutron with an average potential from the 

helium nuclei
V ~ 2 x 10–8 eV
relative decrease in τn of ~ 10–13

– energy of the electron is slightly higher in 4He
Emin ~ 1.3 eV
Increases τn by ~ 6 x 10–6 by reducing the maximum 

kinetic energy available to the electron.

– energy of the proton is slightly lower in 4He
∆E ~ 2 eV
At most a 10–5 effect, but probably will occur subsequent 

to the decay and have no effect.

• Matrix element for the decay can be influenced
ie. ga is 26 % greater in neutron decay than in muon decay.
∴ A 20 % shift in the matrix element for a neutron bound 

in a nucleus gives a 10–16 effect.


