Even Superheavies Need a Little Protection

How heavy can the periodic table go? Scientists have long had the capability to create new, “superheavy” elements by fusing lighter nuclei. The existence of
a system formed in a heavy-ion fusion reaction is often brief, however, because the nucleus heats up in the process and must find a way to shed energy and
cool back down to a more stable state. Often this is accomplished through fission, where the nucleus simply breaks apart. While much progress has been
made in recent years, it’s still a challenge to find the optimal combination of beam and target—as well as the kinematic conditions—to maintain the
structural integrity of the superheavies and lead to the formation, at reasonable rates, of new elements. This is due in part to the relationship between
fission barriers and excitation energy—the energy difference between the ground and excited state. The conventional wisdom has been that fission
barriers, which stabilize the nucleus, tend to disappear at higher excitation energies.

Using microscopic density functional theory, nuclear theorists from UT/ORNL carried out calculations [1,2] showing that fission barriers of excited
superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent
with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies,
sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for
understanding other types of fission, such as that used in reactors to provide energy
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elements synthesized in cold- and hot fusion reactions
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Calculated inverse barrier damping parameter for even-even superheavy nuclei. The
fastest decrease of fission barriers with excitation energy is predicted for deformed
nuclei around N =164 and spherical nuclei around N =184 that are strongly stabilized by
shell effects. On the other hand, for the transitional nuclei around N=176, synthesized in
hot fusion reactions, the barrier damping is relatively weak.
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