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Using random two-body interactions between valence space nucleons, we calculate various sta-
tistical measures of the many-body wave functions obtained from diagonalization. These measures
include the entropy, spectral rigidity, inverse participation ratio, and related quantities. We also
classify the interactions according to their mean-field characteristics by calculating the Hartree-
Fock-Bogoloubov solution for selected random interactions and comparing to the spectra generated
by shell model diagonalization.

I. MAIN BODY OF THE PAPER SHOULD BEGIN HERE

Many researchers have noticed that small changes in particular matrix elements improve upon the results generated
from effective interaction theory and alleviate failures. For example, in sd-pf shell model calculations changing the
difference between only two matrix elements completely changes the character of the monopole single-particle energy
difference between the ds/; and f7/5 [1].

This paper is organized as follows. We discuss in Section II the general form of the two-body random interactions
employed in these calculations. We characterize the four random interactions using statistical measures in Section
ITI. A correlation is shown between the various statistical pairing strengths in these interactions and the statistical
measures. In Section IV we describe the intrinsic HFB structures that appear to be generic for J = 0 and maximally
aligned ground state configureations.

II. STATISTICAL STUDIES

In order to study the statistical nature of the random interactions we employ four basic ensembles that may be
specified by the cj 1 coefficients and the single-particle Hamiltonian, if present. The first of these we describe as the
Random Quasiparticle Ensemble (RQE). In this case ¢ = [(2T 4+ 1)(2J + 1)] . This relation between the c; 1,
which was discussed in [2], came from imposing on the ensemble the constraint that it should remain the same for
the particle-particle interaction as for the particle-hole interaction. Our second ensemble is the two-body random
ensemble (TBRE) for which c¢jr = constant. Historically, this was the first two-particle random ensemble to be
employed in studying statistical properties of many-particle spectra [3]. These two ensembles assume degenerate
single particle energies. Realistic interactions do have nonzero single-particle energies and these will in principle affect
various spectral properties.

Our interactions preserve rotational and isospin invariance as well as particle number conservation. We use the
typical shell-model basis for calculations. The single particle states of the shell model are oscillator states classified
by the quantum numbers {nljmt¢,} for the principle quantum number, the orbital angular momentum, the total
momentum and its projection and the isospin projection. The hamiltonian is given by
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TABLE I. Percentage of ground states with a given spin in the >*Mg. The maximum spin obtainable by ?*Mg in this model
space is Jmax = 12. We consider the two of the random ensembles discussed in this paper.

Spin RQE TBRE
J=0 703 548
J=1 39 30
J=2 164 135
J=3 12 20
J=4 38 85
J=5 4 3
J=6 8 21

A. Subsection headers look like this

We diagonalized 1000 random interactions generated from the ensembles described in the previous section. In this
paper we concentrate on the system ?Mg which is comprised of 4 neutrons and 4 protons in the 1s-0d shell model
space. Thus, the maximum spin state that we study in these systems is J = 12.

In Table I, we indicate the relative abundances of J spin of ground states that are found in the four ensembles for
the 2*Mg and ?°Ne systems. In each case J = 0 dominates.

Once the Hamiltonian is diagonalized, a given state is a superposition of the (normalized) many-body basis states
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where the coefficients of expansion obey the relation >, | A% |?

D. We define the entropy within this basis as

= 1 and the sum includes all many-body basis states
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where W@ =| A¢ |2 are the overlap intensities. Thus, S = 0 if only one many-body basis state contributes to the
sum (i.e. for a particular k¥ we have W = 1), whereas if all states equally contribute we obtain S = InD. Typically
instead of plotting S directly, we discuss for a given eigenstate of the Hamiltonian P(a) = exp(S®). For the two
extreme cases P(a) = exp(S%). For the two extreme cases P(a) = 1 when the wave function is equivalent to a single
basis state, and P(a) = D when all basis states equally contribute to the sum.

We now limit our discussion to those interactions that give J = 0 ground states. We show in Fig. 1a the entropy
for the first 150 J = 07,7 = 0 wavefunctions for the four ensembles. No statistical difference exists among the four
ensembles. We also show the entropy of the first 150 0% states in the USD interaction. Since there is no ensemble
average, the line is much less smooth, but the general agreement between the USD and the random interactions
appears obvious. None of these interactions reaches the GOE limit which is given by 0.48D = 8415 in this case.

We also use the inverse participation ratio (IPR) to quantify the random ensembles. The IPR is given by

IPR, =D (Wp)?, (5)

and measures the inverse fraction of Fock states that participate in forming the full wavefunction | ). This measure
emphasises the contribution of the large components of the wave function. The extreme cases correspond to IPR, =1
when all Fock states equally contribute to the wave function | «f, while I[PR, = D when only one Fock state
contributes. As point of reference, we calculated the IPR for the first 7 = 0T state using the USD interaction and
find IPR; = 64.18 and IPR; = 13.48 with and without single particle splitting, respectively. As one expects, the
single-particle splitting enhances the d5,, occupation and hence acts as a filter for choosing many-body basis states.
We show in Fig. 1b the IPR for the first 150 0T states. The inset shows the same quantitiy for the first 5 states. We
see no statistically significant difference in the character of the random ensembles beyond the first (o = 1) state. The
inset shows in more detail the first state. We note that both the RQE-SPE and TBRE-SPE show enhanced IPR’s
compared to the RQE and TBRE. This property is somewhat different than we anticipated from our findings using
the realistic two-body interaction.
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FIG. 1. Shown are two statistical quantities that describe the ensemble structure for the various random interactions in the
N = Z = 4 system. A comparison to the USD interaction is also plotted. Shown are a) the entropy as a function of state
number; and b) the inverse participation ratio (IPR). The inset to b) shows the IPR for the first five states.
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