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e HRIBF & some highlights of the n-rich
research program

— Motivation for an e-beam driver upgrade

e Photofission for RIB production: some
advantages, some disadvantages

e Comments on properties and capabilities of
a e-beam driven facility
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The first transfer measurements on N=82 nuclei
on / near r-process path
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Decay spectroscopy of exotic nuclei

B-decay studies around "8Ni with postaccelerated Discovery of superallowed a-decay
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Pioneering studies with neutron-rich
radioactive beams of heavy nuclei

Fusion & Fission

» Probing the influence of neutron excess on fusion at and
below the Coulomb barrier

» Large sub-barrier fusion enhancement has been
observed

* Inelastic excitation and neutron transfer play an important
role in the observed fusion enhancement

* Important for superheavy element synthesis

* ERs made with 132134Sn cannot be made with stable Sn
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* Probing the evolution of collective motion in

neutron-rich nuclei

* Increasingly larger contributions of neutrons to
B(E2) values above 132Sn

* Recoil-in-Vacuum technique used to measure the

g-factor for the first 2+ state in 13?Te:
Stone et al., PRL 94, 192501 (2005)




Number of counts

Coulex of n-rich nuclel around A=80 at HRIBF

Particle-y coincidence spectra
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Coulomb Excitation of **Se (N=50)
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RISAC Science Drivers
& the electron driver

e Nuclear Structure

— Probing the disappearance of shells
e Spectroscopy & reactions in 32Sn, ®Ni regions

— Evolution of collective motion
e We can probe 2Zr and °Kr _regions (not 1°°Ba)

— Neutron Skins
e Structure/reaction studies of the most n-rich species

— SHE
e Reactions with 32Sn (~10°) and vicinity
e For Z=112, N=184, reaction mech. Studies with 9%%Sr (10 107)

e Nuclear Astrophysics
— Decay spectroscopy (Bn, 1)

e Stockpile Stewardship
— Surrogate reactions (n transfer, etc.)
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HRIBF view of e-beam driver upgrade

e The discussion of a photo-fission driver that
follows was developed based on specific
considerations relevant to HRIBF

e We have particular boundary conditions:
— A turn-key simple-to-maintain accelerator

— A concept that “guarantees” a minimum level of
performance without need of major targetry
breakthroughs.

— A capability dedicated to extending our reach
toward very n-rich nuclei in a timely manner

11 Managed by UT-Battelle
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HRIBF as a two driver facility

e We are developing a proposal for a turn-key electron accelerator (e-
machine), capable of providing CW ~ 100kW beams with energies at or

above 25 MeV.

e This accelerator would be dedicated to producing neutron-rich species
by photofission of actinide targets.

e Such an accelerator is by far the most cost effective means to achieve
in-target fission rates in the mid 1013 /s scale.

e A comparable upgrade to our p-rich capability would be far more
expensive

e Target development to support operation at >1013f/s (~50kW )is well in
hand. Thus we are confident we can reach fission rates about 20 times
larger than current HRIBF capability.

e Theincrease in fission rate is not, however a good comparative metric.
— Photofission is a “colder” process than proton induced fission.

— It results in lower actinide excitation, and less neutron evaporation from both
the excited actinide system and the fragments.

— Consequently production of very neutron-rich species can be enhanced by a
substantial factor compared to 50 MeV proton induced fission, at the same
fission rate.
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238U photo-fission is dominated by the GDR
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238U photo-fission is dominated by the GDR

50 MeV e
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238U photo-fission is dominated by the GDR

50 MeV e (solid) — 25 MeV (dashed)
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238U photo-fission is dominated by the GDR

50 MeV e (solid) - 12 MeV (dashed)
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But photo-fission is not the dominant GDR decay

channel
300 L EEEU +y i
— o{y,F) (GDR)
. 400 v | e a(y,F) QD -
—E """ a(y,tot) GDR
300 | -
—_ Data from Livermore and
2 Saclay groups
- 200 | .
o
100 i
0 30 40 30
E-:,r (MeV)

e (y,n) and (y,2n) account for ~2/3 of GDR cross section

e Substantial 23623’U production is inevitable

17 Managed by UT-Battelle

for the Department of Energy e R I BS ’ 07




Photofission yields

e 1013 f/s “easily” achieved

g
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A sample comparison with data: Sn isotopes
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Neutron multiplicities associated with fission
are important figures of merit for our purposes

e Proton induced fission at HRIBF energies
— E,=50 MeV 2v,=8.5
— E,=500 MeV >v,~13

e Electron induced photofission:
— E,=25 MeV - v,=3.3
— E,=50 MeV > v,=3.4
e Neutron-induced fission is very similar in many

ways to photofission. 238U(n,F) @ ~15 MeV has
final state properties very similar to E;=25-50

MeV photofission.

20 Managed by UT-Battelle
for the Department of Energy e R | BS 7 07



RIB production by photofission
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Conservative target design for performance
determination

p=3 g/cm3

d=3cm (0.3 R,))
t=30g/cm? 5X, (10cm)
M=212 ¢

p=6 g/cm?3

d=3cm (0.6 R,,)
t=30g/cm? 5X, (5cm)
M=212 ¢

X,=6 g/cm? (U)
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Photofission target issues/ limitations
Direct bombardment
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Fission rate and power In target
effect of a converter
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Beam Energy (MeV)

what it takes to make 10%3 fiss./s

eRIBs’07
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Photofission target issues

Converter + target

25

Beah energy '

Power in target (kW): 10" fis. s’
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Yield (fissions/e /cm) x 10°

Yield (fissions/e /cm)x 10*

eRIBs’07
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What about even lower e-energy?

TOO I + I I
© 600 - Beam energy ]
2 + (MeV)
ED 500 L 125 |
— —a— 25
2 400 | A "'"?go -
2 i
bt 300 - i
S 200} .
£ _

.
g 100 N
0

0 1 2 3 4 9
Converter thickness (rad lengths, W)

e For E.=12 MeV, beam power > 200 kW is required to reach 1013f/s
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What about even lower e-energy?

150 |

100 |

o
o

Power dep. in target (kW) for 10" fis. ™'
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e For E, ~12 MeV, power deposited in target IS ~5x
greater than for E, =25 or greater to reach 103 f/s

e Lower E* may enhance n-rich yield
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An example of a somewhat more aggressive
design
Similar power required to
reach 1013 f/s (652kW @

t=30g/cm? (5X,)
M=495 g

2.3 x UC, front
surface area
compared to

3 cm dia. Cylinder

T crm
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Power Density In Targets

50MeVp0.75KkW (1.4x2cm 2g/cc)
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Power Density In Targets

50 MeV e- 48 KW (5x5 cm 6g/cc)

l L1
1013 fiss./s

80 W/g
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Conclusions |I: RIB production

e 1013f/s can be achieved with an ~50 kW facility

— Requires only modest sized targets to achieve initial goals
e 3cmx5cm (212 Q)

— <10 kW deposited in target

— 25 MeV e beam can be used with converter
e Additional technologies can be considered

e Substantially larger yields can be achieved with larger targets
and higher beam powers

— 5009 to 1kg & 100-150 kW
— What is release time?

e Even with thick converters, cannot isolate production target
from beam power and still produce fission at high rates

e Pulsed e-beam can aggravate thermal and mechanical stress
ISsues in target.

31 Managed by UT-Battelle
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Conclusions II: Shielding

1E+7 = =
e Thick target
bremsstrahlung: o D ]
— 0,,~100/E, degrees = E
— Forward angle y dose rate i 1
e D~300 E, (Gy h-1)(kW m-2)1 JE45

e D~1.5x 107Gy htat 1 mfor
50 MeV, 1MW e beam

— 6m concrete or ~1m Fe

— 900y dose rate
e D~70 (Gy h1)(kW m-2)1

e D~7x 104Gy htat 1m for LE+3 | | | |

1MW e beam (E,> 20 MeV) 20 40 60 80 10C
Electron Energy (MeV)

Absorbed Dose Rate (rad/h at 1 m)

1E+4 Sideward Direction (90 degrees)

NCRP Report No 144 (2003)
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Photo-fission yield

In target

HRIBF UC target production rates
(produced via photofission of U-238 at 1073 fissions/second)
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Photo-fission yield
From ion source

HRIBF beams directly from the ion source - unaccelerated beams

(produced via photofission of U-238 at 102 fissions/second) Ly
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Photo-fission yield

Post-accelerated

HRIBF accelerated beam-on-target intensities
(produced via photofission of U-238 at 10" fissions/second)
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Science highlights with e-driver upgrade

— Will test the evolution of nuclear structure to the extremes of isospin
— Will improve our understanding of the origins of the heavy elements

Evolution of single-particle structure
Transfer reactions at 132Sn & beyond
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Reaction mechanisms for the
formation of superheavy nuclei

Decay properties of nuclei at the limits
Crucial for understanding the formation of
elements from iron to uranium




More to Come

e Alan Tatum will discuss
— Discuss current status of HRIBF upgrade program

— Discuss options for actual implementation of a e-
beam driven facility that meets our requirements

— show preliminary facility layouts

e Dan Stracener will discuss target issues (the
key to overcoming performance limitations,
and going well beyond 1013 fissions second)
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Conclusion

e Science with neutron-rich fission fragment beams
IS the keystone of our research program and will
continue to be

e An electron-beam based facility can produce
Intense beams in a cost-effective way

e Such a facility would be competitive world-wide
for neutron-rich beams until FRIB-scale facilities
are avallable

— 10%3 photo-fissions/second is a reasonable baseline to
work from

e Cost containment is critical — cost-effectiveness
IS a major part of the argument

e There is arelatively short window during which
such a facility is relevant.
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Extra material
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Decay studies pushing the frontier of n-rich nuclei

Examples with eMachine

2-3 MeV/u mixed isotope
neutron-rich ISOL beam

]
- { Yy .
MCP #‘_"

Beam
diagnostic Split anode ion chamber

- - high pressure to range out
& timi
T low pressure to ID and
implant at Ge center

Clover Ge detectors (4)

Beta detectors
(2 half-cylinders)

€

Moving tape (35 mm)
- implants at window
- implants at Ge center

L E4L:) N WUMORT Bl T o0 Bta- gaies e of Lswerd

Data from Winger et al.

lon

200 keV Tandem tio

(ionsis) | (ionsis) | (s) 7%Cu: T/, ~ 190 ms
7oNi 0.3 0001 | 011 o 787n 2+ -> O+ 0.1 ions/s
s0cy 1000 4 ? : (730 keV)

B1Cy 7 0.3 ?
BZZn

94Br
968r

fﬂ

T | Wb o

1389 89 2 ? L
) Betn gn*red y-ray energy (~0.5 keV/channel)
1375p 9x10° 2x10% ?
140 2 g o
AN v t,, & Bn rates for many r process nuclei are accessible
149Cs 2x10% 4 ?

Energy levels test evolving nuclear structure



The evolution of single-particle levels and
shapes in very neutron-rich nuclei beyond the

N=50 shell closure
B-decay experiments with postaccelerated (3 MeV/u) pure neutron-
rich RIBs, Oct-Nov 2006

beam T, (S) main results
°Cu 0.65 Bn-branching ratio Iy,
Cu 0.46 s V- lEvels in N=47 77Zn
8Cu  0.35 s 1° Of  78Cu,q revised
PCu 0.19 3ny decay observed first time
83Ga 0.30 3ny,By, vSy,, in N=51 83Ge
84Ga  0.08 2* Iin N=52 84Ge, vs, In 83Ge
8%Ga ~0.07 rate of 0.1pps...

Jeff Winger et al.
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The evolution of single-particle levels and shapes
In very neutron-rich nuclei beyond the N=50 shell

closure
&!‘mﬁ“ Nov’06 : experiment with 2 PPS of 3 Meviu %4Ga

p n Y p Y
84Ga— 84Ge* ™ 83Ge* (vs,,) " 83Ge(vd,),) 84Ga — 84Ge* (2+) = 84Ge (0+)
N=51 8Ge @}fmﬁ. - N=52 84Ge Mﬁ]ﬁ"

248 keV - 625 kev\

J u“fu U\ﬂ [P’N ‘J N.Lﬁdﬂnﬂﬂﬂwﬂw L

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

LED lFmeJlMl J’Hmuﬁmw

B-gated y-spectrum (0.5 keV/ch) B gated v-spectrum (O. 5 keV/ch)
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Transfer reactions: shell structure of n-rich nuclei

Single-particle states around closed shells provide a fundamental shell model test

Example: (d,n)-like reactions
— neutron s.p. levels

e

Recoils detected in

coincidence v /.- ;
rotons detected in Si-arra
+°25n(d.p)™>?sn @ HRIBF P W}lth the e-driver
S Jonesetal. Intensity
o :
oL o 6x10%ions/s  Sjngle-particle on 1 (ionsts) | 2 (®)
N transfer near 81Ge 3x105 0.9
ol = ’8Ni and 132Sn
& 88Se 3x10% 1.5
Reactions of interest 963y 75104 11
i (d,p) %8Sy 1x104 0.65
9 8
( Be, Be) 13439n 3x106 1.0
2 (®He,d)
w (°*He,o) 138Te |  5x108
) T | P Lo Lo LY Mo |2é0r(|) (7Li,889) 140Te 2x104

E. (channels) —>
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13C(134Te,12C)135Te neutron transfer
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Coulomb excitation Iin n-rich systems

Probes the evolution of collective motion in loosely-bound, neutron-rich nuclei

C, Ti, Zr
target —

Charged-particle &2\
) =
Gamma array

With eMachine: neutron-rich

T nuclei from N=50 to N=82 (and
beyond) are accessible
Al Intensity
:: " 4 Radford et al. lon (iOﬂS/S) t1/2 (S)
= Beene et al. Ge | 3x105 09
g’ i { 88Se 3x104 1.5
UN‘:I’ 98 4
@ H RI BF Sr 1x10 0.65
136
01k i'—i %3000 134Sn/s Sn 700 025
oy @ | 138Te 5x106 1.4
4 M S L L 140Te 2x104 2

fo Neutron Number 3’ 07 3 prep—



Heavy ion fusion reactions

Probes the influence of neutron excess on fusion at HRIBF Results
and below the Coulomb barrier Evaporation Residue Cross Sections

— important for superheavy element synthesis ' 1 ﬁ;ﬁ S
0=

100 F
: =
CcBshaped e i
12t Timing 2nd Timing (,f( DEssD Timing-and loiiist oh |

Snson
Detector Detector " Position ™ champer

Cross Section (mb)

; X 14 6,
Target Detector 0 ® Snt+ Ni
! i 13 ST
Ii o “sn+”Ni
i I o "'Sn+"Ni
) E ”
140 150 160 170 180 190
COM Energy (MeV)
3
10 T T

with eMachine

More n-rich projectiles ;E
Intensity Further below barrier g 3
lon (iOnS/S) t1/2 (S) 134 © ]
Sn below 10 mb
92 5 . .

Br 2x10 034 | Transfer reaction studies ]

13agn | 3x10 1.0 on the same system ]
136Sn 600 0.25 will help to understand 220

reaction mechanism



Unattenuated angular correlations: Theory &
experiment

130Te SIB I
Hyball Ring 2 : .1 — ane ]
y g : . 6, =90
1 1 | i
i 2 ".:;\‘.
o,=155° | U\ LW /NS

0_0 1 1 1 1 1 1 1 1
0 60 120 180 240 300 O 60 120 180 240 30 0 60 1 180 240 300 36C
Ay lacarees]

12C recaoll

e w(o.a0) | F L)

130Te beam |
g -."lr
‘ 130 gﬁ‘ |
scattered 130Te T\ 0
. 1 i
stopped in Cu :.E :
= -!

W
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Magnetic moment: RIV attenuated
angular correlations

20 130Te stopped 20 130Te RIV i 132T¢ RIV
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1.0 < 1.0 }
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Neutron transfer reactions

Accessible at HRIBF

Accessible with e-machine

66 70 74 78 82 86
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Coulex (1-step)

Accessible at HRIBF

Accessible w e-machine

66 70 74 78 82 86

50 Managed by UT-Battelle

for the Department of Energy e R I BS ’ 07



Multi-step Coulex

Accessible at HRIBF

Accessible w e-mach

66 70 74 78 82 86
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g-factor measurements

Accessible at HRIBF

Accessible w e-mach

66 70 74 78 82 86
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