next up previous

3.1.7 Sixth Generation (1990 -- )     continued...

One of the most dramatic changes in the sixth generation will be the explosive growth of wide area networking. Network bandwidth has expanded tremendously in the last few years and will continue to improve for the next several years. T1 transmission rates are now standard for regional networks, and the national ``backbone'' that interconnects regional networks uses T3. Networking technology is becoming more widespread than its original strong base in universities and government laboratories as it is rapidly finding application in K--12 education, community networks and private industry. A little over a decade after the warning voiced in the Lax report, the future of a strong computational science infrastructure is bright. The federal commitment to high performance computing has been further strengthened with the passage of two particularly significant pieces of legislation: the High Performance Computing Act of 1991, which established the High Performance Computing and Communication Program (HPCCP) and Sen. Gore's Information Infrastructure and Technology Act of 1992, which addresses a broad spectrum of issues ranging from high performance computing to expanded network access and the necessity to make leading edge technologies available to educators from kindergarten through graduate school.

In bringing this encapsulated survey of the development of a computational science infrastructure up to date, we observe that the President's FY 1993 budget contains $2.1 billion for mathematics, science, technology and science literacy educational programs, a 43% increase over FY 90 figures.