next up previous

3.1.6 Fifth Generation (1984--1990)     continued...

The Intel iPSC--1, nicknamed ``the hypercube'', took a different approach. Instead of using one memory module, Intel connected each processor to its own memory and used a network interface to connect processors. This distributed memory architecture meant memory was no longer a bottleneck and large systems (using more processors) could be built. The largest iPSC--1 had 128 processors. Toward the end of this period a third type of parallel processor was introduced to the market. In this style of machine, known as a data-parallel or SIMD, there are several thousand very simple processors. All processors work under the direction of a single control unit; i.e. if the control unit says ``add a to b'' then all processors find their local copy of a and add it to their local copy of b. Machines in this class include the Connection Machine from Thinking Machines, Inc., and the MP--1 from MasPar, Inc.

Scientific computing in this period was still dominated by vector processing. Most manufacturers of vector processors introduced parallel models, but there were very few (two to eight) processors in this parallel machines. In the area of computer networking, both wide area network (WAN) and local area network (LAN) technology developed at a rapid pace, stimulating a transition from the traditional mainframe computing environment toward a distributed computing environment in which each user has their own workstation for relatively simple tasks (editing and compiling programs, reading mail) but sharing large, expensive resources such as file servers and supercomputers. RISC technology (a style of internal organization of the CPU) and plummeting costs for RAM brought tremendous gains in computational power of relatively low cost workstations and servers. This period also saw a marked increase in both the quality and quantity of scientific visualization.