next up previous

2.4.1 Derivative Programming     continued...

For example, output from testing Rosenbrock's function for 12 variables consists of the following:

    X0 VECTOR:
         -1.20            1.00           -1.20            1.00
         -1.20            1.00           -1.20            1.00
         -1.20            1.00           -1.20            1.00
    Y VECTOR:
         -1.09            0.77           -0.88            0.64
          0.71            0.58            0.94           -0.90
         -0.62            0.77           -0.90           -0.98

         ENTERING TESTGH ROUTINE:

    THE FUNCTION VALUE AT X               =   1.45200000E+02
    THE FIRST-ORDER TAYLOR TERM,  (G, Y)  =   3.19353760E+02
    THE SECOND-ORDER TAYLOR TERM, (Y,HY)  =   5.39772665E+03
    EPSMIN =   1.42108547E-14


    EPS           F              TAYLOR          DIFF.         RATIO

 5.0000E-01  1.09854129E+03  9.79592712E+02  1.18948574E+02
 2.5000E-01  4.07080835E+02  3.93717398E+02  1.33634374E+01  8.90104621E+00
 1.2500E-01  2.28865318E+02  2.27288959E+02  1.57635878E+00  8.47740855E+00
 6.2500E-02  1.75893210E+02  1.75702045E+02  1.91165417E-01  8.24604580E+00
 3.1250E-02  1.57838942E+02  1.57815414E+02  2.35282126E-02  8.12494428E+00
 1.5625E-02  1.50851723E+02  1.50848805E+02  2.91806005E-03  8.06296382E+00
 7.8125E-03  1.47860040E+02  1.47859677E+02  3.63322099E-04  8.03160629E+00
 3.9063E-03  1.46488702E+02  1.46488657E+02  4.53255493E-05  8.01583443E+00
 1.9531E-03  1.45834039E+02  1.45834033E+02  5.66008660E-06  8.00792506E+00
 9.7656E-04  1.45514443E+02  1.45514443E+02  7.07160371E-07  8.00396463E+00
 4.8828E-04  1.45356578E+02  1.45356578E+02  8.83731524E-08  8.00198196E+00

    DIFF IS SMALL (LESS THAN   2.97291798E-08 IN ABSOLUTE VALUE)